Food web interactions among walleyes, lake whitefish, and yellow perch in Green Bay, Lake Michigan

Lucas Koenig, Daniel Isermann, Daniel Dembkowski, Wesley Larson, Iyob Tsehaye, Scott Hansen, Steve Hogler, Tammie Paoli, and Troy Zorn



### **Green Bay Overview**

- Largest freshwater estuary
- Lake Michigan's largest bay
- Mean depth  $\approx$  20 m
- Max depth  $\approx$  53 m
- South-to-north gradients:
  - Productivity
  - Depth





# **Current Fishery**

- Walleye (WAE) near historically high levels
- Lake whitefish (LWF) mixed abundance
- Yellow perch (YEP) near historically low levels



# **Trophic Interactions**

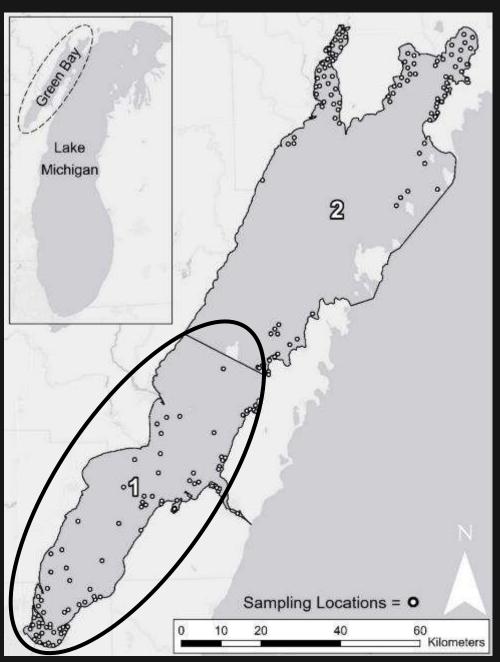
- Shared resources
- Competition
- Predation

## **Potential Concerns**

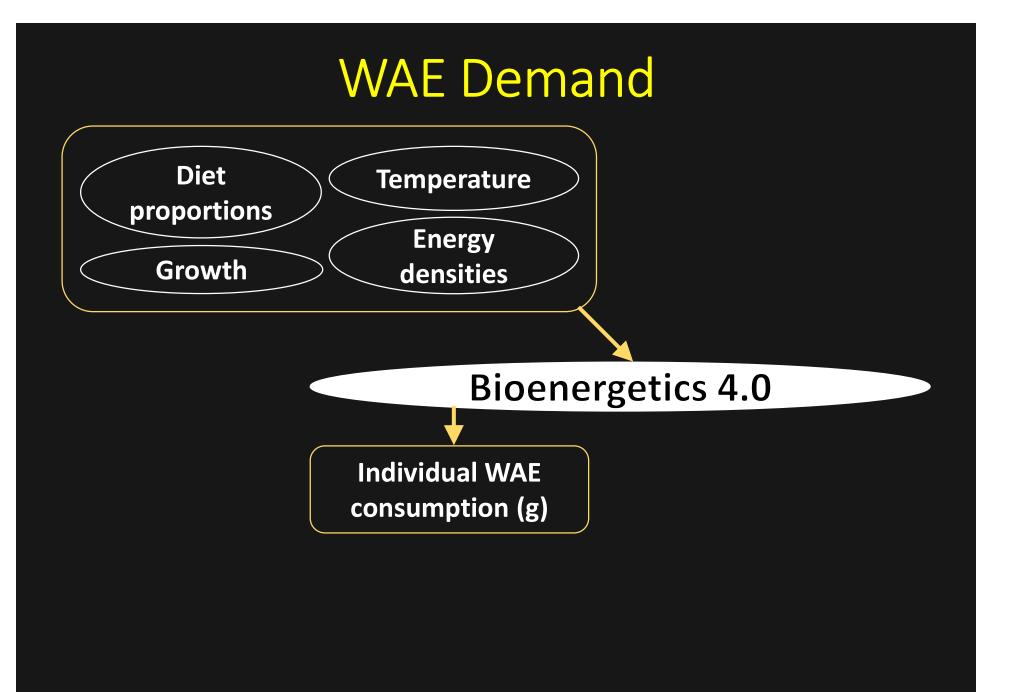
- WAE predation may regulate LWF and YEP populations
- Concerns based on observations
- Is WAE demand enough to impact LWF and YEP recruitment?

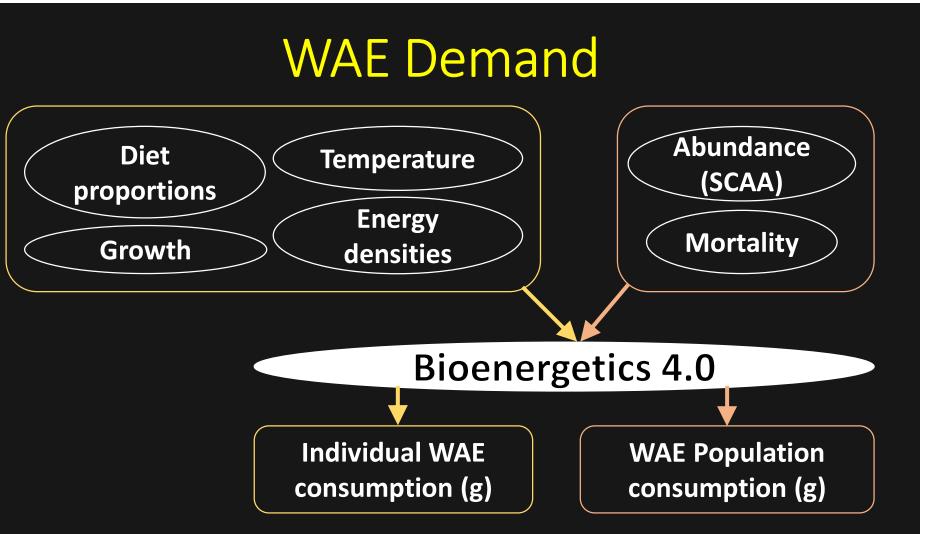


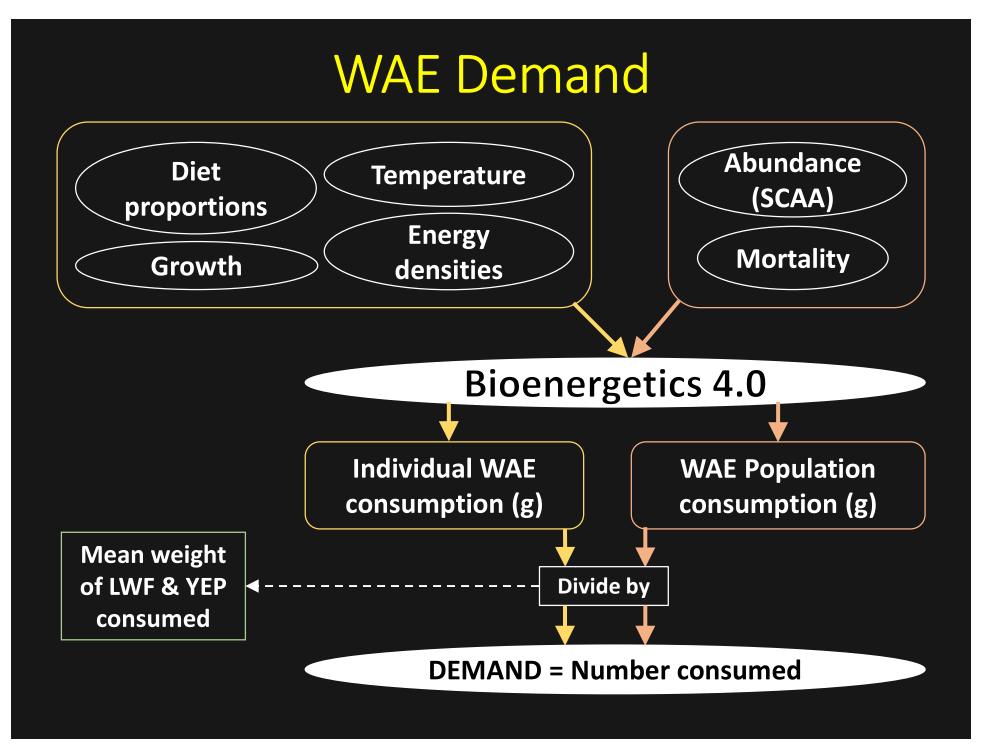



To determine if walleye predation influences the recruitment potential of lake whitefish and yellow perch in Green Bay.




### 2018 Collections


- May 1 October 31
- Primarily gill netting
- 985 total WAE
  - 49% empty stomachs
- Nonempty diets:
   281 WAE diets Zone 1
  - 217 WAE diets Zone 2














# LWF and YEP Supply

\*Compared consumption with 2 estimates of LWF and YEP supply

1) SCAA abundance estimates

2) Population fecundity method

# LWF and YEP Supply

#### \*Compared consumption with 2 estimates of LWF and YEP supply

#### 1) SCAA abundance estimates

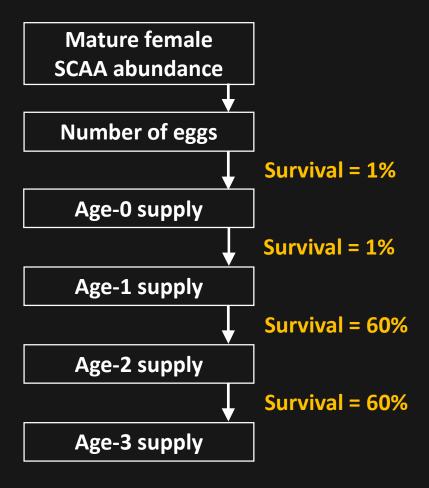
#### •Model estimates available for:

- Age-3 LWF
- Age-1 YEP
- Age-2 YEP

#### 2) Population fecundity method

# LWF and YEP Supply

#### \*Compared consumption with 2 estimates of LWF and YEP supply


#### 1) SCAA abundance estimates

#### •Model estimates available for:

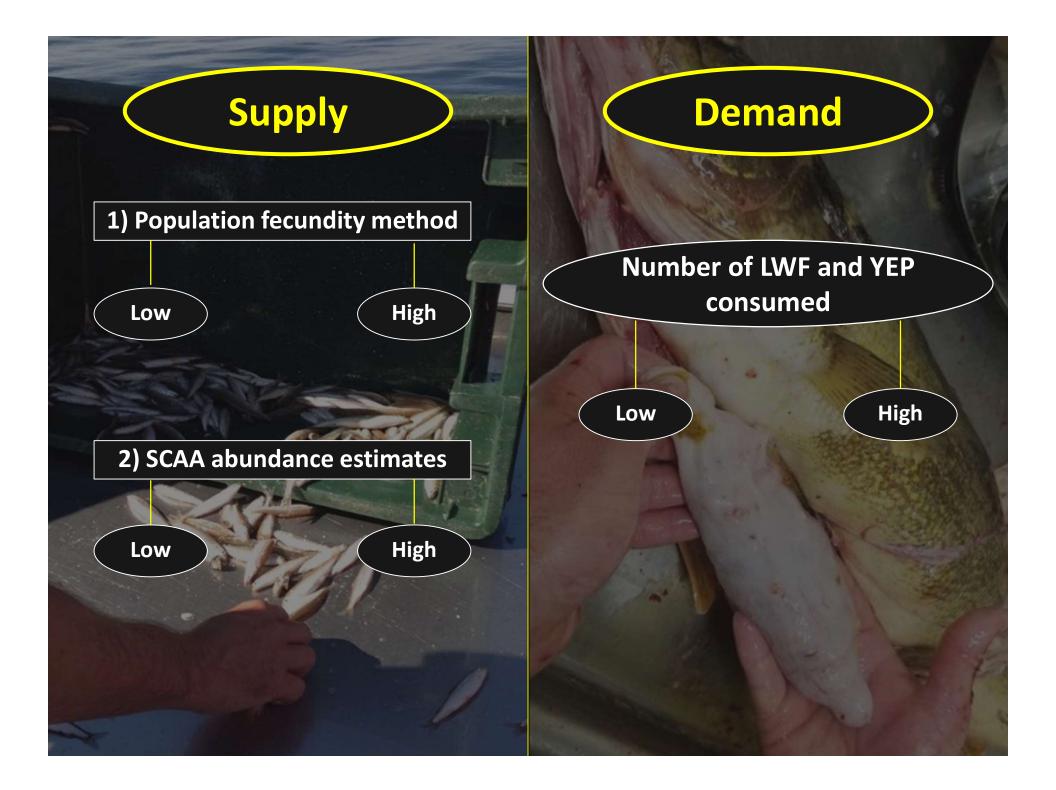
- Age-3 LWF
- Age-1 YEP
- Age-2 YEP



#### 2) Population fecundity method



#### 1) Population fecundity method


Supply

#### 2) SCAA abundance estimates



### Demand

#### Number of LWF and YEP consumed



### Recruitment Potential Lost to WAE

- Best case scenario  $\rightarrow$  High supply; Low WAE demand
- Worst case scenario → Low supply; High WAE demand
- WAE demand divided by available supply
- ≥ 20% will be considered important





### Major Walleye Prey Fish Species



# Individual WAE Consumption by Number

| WAE<br>Age(s) | LWF<br>Age-0 | LWF<br>Age-1 | LWF<br>Age-2 | LWF<br>Age-3 | Total |
|---------------|--------------|--------------|--------------|--------------|-------|
| 1, 2          | 37           | -            | -            | -            | 37    |
| 3             | 74           | -            | -            | -            | 74    |
| 4, 5, 6       | -            | -            | -            | -            | 0     |
| 7+            | -            | 6            | 1            | < 1          | 7     |

### Age-3 LWF Consumed by WAE

\*LWF supply = Age-3 SCAA abundance estimates
•Best case scenario → High LWF supply; Low WAE demand
•Worst case scenario → Low LWF supply; High WAE demand

| Scenario      | Age-3 LWF<br>Supply (SCAA) | WAE<br>Demand | Percent<br>Consumed |
|---------------|----------------------------|---------------|---------------------|
| Best<br>Case  | 18,853,100                 | 6,598         | 0.03%               |
| Worst<br>Case | 6,280,480                  | 90,991        | 1.5%                |
|               |                            |               |                     |

### LWF Consumed by WAE

\*LWF supply = Population fecundity method
•Best case scenario → High LWF supply; Low WAE demand

| LWF<br>Age                | LWF<br>Supply | WAE<br>Demand | Percent<br>Consumed |
|---------------------------|---------------|---------------|---------------------|
| <b>0</b><br>(post-larval) | 2,299,089,986 | 4,906,011     | 0.2%                |
| 1                         | 22,990,900    | 303,360       | 1.3%                |
| 2                         | 13,794,540    | 33,306        | 0.2%                |
| 3                         | 8,276,724     | 6,598         | 0.08%               |

### LWF Consumed by WAE

# \*LWF supply = Population fecundity method •Worst case scenario → Low LWF supply; High WAE demand

| LWF<br>Age                | LWF<br>Supply | WAE<br>Demand | Percent<br>Consumed |
|---------------------------|---------------|---------------|---------------------|
| <b>O</b><br>(post-larval) | 915,931,230   | 133,446,875   | 14.6%               |
| 1                         | 9,159,312     | 2,451,698     | 26.8%               |
| 2                         | 5,495,587     | 332,634       | 6.1%                |
| 3                         | 3,297,352     | 90,991        | 2.8%                |

# Individual WAE Consumption by Number

| WAE<br>Age(s) | YEP<br>Age-0 | YEP<br>Age-1 | YEP<br>Age-2 | Total |
|---------------|--------------|--------------|--------------|-------|
| 1, 2          | 77           | 2            | -            | 79    |
| 3             | 7            | 7            | -            | 14    |
| 4, 5, 6       | -            | < 1          | -            | < 1   |
| 7+            | 3            | 3            | 9            | 15    |

### Age-1 YEP Consumed by WAE

\*YEP supply = Age-1 SCAA abundance estimates
•Best case scenario → High YEP supply; Low WAE demand
•Worst case scenario → Low YEP supply; High WAE demand

| Scenario      | Age-1 YEP<br>Supply (SCAA) | WAE<br>Demand | Percent<br>Consumed |
|---------------|----------------------------|---------------|---------------------|
| Best<br>Case  | 1,100,880                  | 546,380       | 49.6%               |
| Worst<br>Case | 246,293                    | 9,452,007     | ALL                 |
|               | 246,293                    | 9,452,007     | ALL                 |

### Age-2 YEP Consumed by WAE

\*YEP supply = Age-2 SCAA abundance estimates
•Best case scenario → High YEP supply; Low WAE demand
•Worst case scenario → Low YEP supply; High WAE demand

| Scenario      | Age-2 YEP<br>Supply (SCAA) | WAE<br>Demand | Percent<br>Consumed |
|---------------|----------------------------|---------------|---------------------|
| Best<br>Case  | 718,604                    | 372,940       | 51.9%               |
| Worst<br>Case | 392,650                    | 3,319,662     | ALL                 |
|               |                            |               |                     |

### YEP Consumed by WAE

\*YEP supply = Population fecundity method
•Best case scenario → High YEP supply; Low WAE demand

| YEP Age | YEP<br>Supply | WAE<br>Demand | Percent<br>Consumed |
|---------|---------------|---------------|---------------------|
| 0       | 318,955,020   | 5,736,185     | 1.8%                |
| 1       | 3,189,550     | 546,380       | 17.1%               |
| 2       | 1,913,730     | 372,940       | 19.5%               |

### YEP Consumed by WAE

\*YEP supply = Population fecundity method
•Worst case scenario → Low YEP supply; High WAE demand

| YEP Age | YEP<br>Supply | WAE<br>Demand | Percent<br>Consumed |
|---------|---------------|---------------|---------------------|
| 0       | 140,401,907   | 301,371,740   | ALL                 |
| 1       | 1,404,019     | 9,452,007     | ALL                 |
| 2       | 842,441       | 3,319,662     | ALL                 |

### Summary

LWF consumption by WAE:

 Age-0 LWF → 0.2 - 14.6%
 Age-1 LWF → 1.3 - 26.8%
 Age-2 LWF → 0.2 - 6.1%
 Age-3 LWF → 0.03 - 2.8%

 YEP consumption by WAE:

 Age-0 YEP → 1.8% - ALL

- Age-1 YEP  $\rightarrow$  17.1% ALL
- Age-2 YEP  $\rightarrow$  19.5% ALL

### Conclusions

Could walleye predation influence the recruitment potential of lake whitefish? Maybe, but unlikely

Could walleye predation influence the recruitment potential of yellow perch?

#### Likely yes

These results can help guide management actions because changes in one species will likely affect fisheries for all three species.

Management actions promoting walleye may provide economic benefit by attracting anglers but could limit angling and commercial opportunities for yellow perch.

# Acknowledgments

- Connie Isermann
- Tom Meronek
- Tim Kroeff
- Derek Apps
- Brandon Bastar
- Steve Surendonk
- Darren Kramer
- Greg Sanville
- Ted Treska
- Brad Smith
- Brandon Harris
- Ryan Wehse
- Glen Schumacher

- Chris Edwards
- Jim Miazga
- Tyler Robinson
- Emma Easterly
- Alex Keiler-Klein
- Ethan Brandt
- Nic Brown
- Dan Hilger
- Todd Stuth
- Dennis Hickey
- Jack Tong
- Charlie Henriksen
- Will Henriksen

- Joe Peterson
- Ben Peterson
- Larry Barbeau
- Robert Casey
- Andy LaFond
- Mark Weborg
- Big Bay De Noc Fisheries
- Ruleau Brothers
- Val Drzewiecki
- Bayshore Resort Bait and Tackle
- UWSP Aquatic Trophic Ecology Class

10