Lake Ice - the Invisible Present \& Place: Years to Centuries Wisconsin to Northern Hemisphere

Wisconsin Lakes \& Rivers Convention Stevens Point, WI April 3, 2020 Remotely

John J. Magnuson
Center for Limnology
University of Wisconsin-Madison

How Do We Deal With Change?

Changes Occur Quickly and Slowly

Thunder Storms

Seconds	Hours	Weeks	
Minutes		Days	Months

Time Scales of Changes

The Invisible Present

An early quote about time

Marcus Auraelius Antonius, Roman Emperor

Time is sort of a river of passing events, and strong is its current;
no sooner is a thing brought to sight than it is swept by
and another takes its place, and this too will be swept away. (ca. 170)

Lake Mendota Ice Duration Invisible Present

Lake Mendota Ice Duration 10 Years

Lake Mendota Ice Duration 50 Years

Lake Mendota Ice Duration 1855-2020

Lake Mendota Ice Duration 1855-2020

Lake Mendota Ice Duration 1855-2020

Invisible Present

 BioScience Magnuson 1990

From
Dale Robertson Ph.D. thesis 1989

132 Years of Serendipitous data

Lake Mendota Ice Duration 1855-2020

Lake Mendota Ice Duration 1855-2020

20- or even 50-years of ice breakup dates are needed to detect the direction of long-term trends.

20-year running slopes
50-year running slopes

The Invisible Place

An early quote about space

John Heywood (mid 1500s)

Not being able to see the forest for the trees. You cannot see the wood for the trees.

Apostle Island National Lakeshore

Bayfield Harbor, Lake Superior

Days between Last Boat in Fall and First Boat in Spring

January 31, 2015
Ice Cover $=76$ days

Ice Road from Madeline Island to Bayfield, Wisconsin

Sources: Bob Hanson https://www.youtube.com/watch?v=d tDfye6Ffc

How much longer can a good thing last?

Taken from an Article in Diane Daulton's Water Column (ddaulton@centurytel.net)

The Madeline Island Ferry was still running in February 2016. Ice Cover $=0$ days
The ferry can break through about 6 inches of ice.
Boats may not have been as able to break ice as well in the early years.

Photo courtesy of Jon Armstrong www.apostlerentals.com

Bayfield Harbor, Lake Superior

Days between Last Boat in Fall and First Boat in Spring

Location of a few of the 46 Wisconsin lakes with ice cover observations

Ice cover duration on a few of the 46 Wisconsin lakes with ice observations

International Lake Ice Analysis Group 1996 at Trout Lake, WI

Changes in Freeze and Breakup Dates

winters
1843-4 to 2008-9
(8 lakes)

Lake Ice:
 a Miner's Canary
 for Climate Change

Magnuson photo
Mystery Lake , mid 1

Influence of Declining Eake Ice on People

Consequences of lake \& river ice loss on cultural ecosystem services.

Knoll et al 2019

Recreational Values Are Being Lost

Ice Services to us Declining with Warming

Photo Legend:
(A) Stable Ice Road (Ontario, Canada). Insert: Truck Through Ice (Manitoba, Canada).
(B) Ice Skating Race (Lake Mälaren, Sweden). Insert: Ice Skater (Lake Fjälnora, Sweden).
(C) Shinto Ritual (Lake Suwa, Japan)
(D) International Eelpout Ice Fishing Festival (Leech Lake, Minnesota, USA).
(E) Seegfrörne Procession (Lake Constance, Germany/Switzerland/Austria).

How Long Has Science Recognized

 the Importance of CO_{2} in Warming the Atmosphere?At least from 1896 through the works of Svante Arrhenius, a Swedish Chemist

Quote:
"if the carbon dioxide is increased by 2.5 to 3 times its present value, the temperature in the arctic regions must rise 8 to $9^{\circ} \mathrm{C}$. and produce a climate as mild as that of the Eocene period."

Greenhouse gasses are increasing owing to burning fossil fuels

CO_{2} reading on Jan 15, 2018: 407.8 ppm
Carbon dioxide concentration at Mauna Loa Observatory

Keeling Curve: https://scripps.ucsd.edu/programs/keelingcurve/

The Longest Lake Ice Record
 Suwa Ko, Japan

Shinto Ceremony at Omiwatari on Suwa Ko

From Shinto tradition to data and analysis

Shinto Ceremony on Lake Suwa, Japan

These long records include dates before \& after the start of the Industrial Revolution.

Ice-on date (Lake Suwa, Japan)

Ice-off date
(River Torne, Finland)
google: Lake Suwa ice \& climate change

Sharma, Magnuson, et al. 2016

Change in ice dates before \& after the start of the Industrial Revolution (Days per Decade)

Water Body	Ice Data	Before	After
	Lake Suwa	$1443-1683$	$1923-2014$
	River Torne	$1693-1866$	$1867-2013$
Lake Suwa (Japan)	Ice on	$\mathbf{0 . 2}$	$\mathbf{4 . 6}$
River Torne (Finland)	Ice off	$\mathbf{- 0 . 3}$	$\mathbf{- 0 . 7}$

Really Long Term - Warm Extremes are Becoming More Common

1443-1499 1500-1549 1550-1599 1600-1649 1650-1699 1700-1749 1750-1799 1800-1849 1850-1899 1900-1949 1949--2004

Industrial Revolutions Vertical Red lines

Sharma, Magnuson, et al. 2016

Increase in the Extreme Event of Lakes Not Freezing

Northern Hemisphere

Expectations:

Extremes can occur from

A change in the mean \longrightarrow

An increase in the variability

Increase in mean and variance

Modified from IPCC Working Group 1, 2001

Lakes would begin to have winters without complete ice cover

When

1. Annual mean air temperatures are equal or greater than $8.4^{\circ} \mathrm{C}$
2. Or when mean depth is greater than 24 meters
3. And elevation is less than 270 meters
4. Shoreline complexity is low (i.e. closer to being round)

Current Conditions

Sharma, Blagrave, Magnuson, O’Reilly et al. 2019

$2^{\circ} \mathrm{C}$ Warming

Sharma, Blagrave, Magnuson, O’Reilly et al. 2019

$4.5^{\circ} \mathrm{C}$ Warming

Sharma, Blagrave, Magnuson, O’Reilly et al. 2019

Northward movement of lakes with intermittent ice

- Intermittent winter ice: current
- Annual winter ice
$+2.0^{\circ} \mathrm{C} \quad+3.2^{\circ} \mathrm{C} \quad+4.5^{\circ} \mathrm{C} \quad+8.0^{\circ} \mathrm{C}$
Sharma, Blagrave, Magnuson, O’Reilly et al. 2019

Number of lakes, countries, or people affected by the shift of lakes from annual to intermittent winter ice cover.

Temperature Increase

Current Conditions

$$
\begin{array}{l|l}
2^{\circ} \mathrm{C} * & 4.5^{\circ} \mathrm{C} * *
\end{array}
$$

Number of lakes with intermittent Ice

> | > 14,800 | 35,300 | 90,200 > |
| :--- | :--- | :--- |

Number of countries
with intermittent ice
30
41
47
Number of people within grid cell of intermittent lake
$248,000,000394,000,000$
562,000,000
** Expected warming without any mitigation

Sharma, Blagrave, Magnuson, O'Reilly et al. 2019

When would Wisconsin lakes likely start having

 intermittent ice?
Lake
 When

Lake Geneva

 southeastern cornerLake Mendota southcentral

Trout Lake northcentral

2100
By 2040

Two More Questions for Today

Are the declines in lake ice cover likely to continue?

What causes all the variability around the trend lines?

Projected Decrease in Extreme Cold Days (<0ํ) from 1961-2000 to 2046-2065

Extreme Cold

Vavrus, Notaro, \& Lorenz 2015

Evidence for the Effect of Greenhouse Gases

Without including anthropogenic greenhouse gasses, models cannot reproduce the warming that has occurred since 1950.

What causes all the variability around the trend lines?

Oscillatory dynamics do not mask the long-term trends of ice breakup in 150-year time series on 13 lakes in Europe \& North America.

Review Sources of Variation

long-term trend of climate change (7 to 30\%)
Quasi Biennial Oscillation (9\%)
El Nino/La Nina Oscillation (8\%)
$10-$ year solar cycle (2\%)
multidecadal oscillations of 20 to 67 years (4\%)
longer than 67 years (3\%)
weather (16 to 24\%)
unexplained (ca. 50\%)
1.Lake ice is a sensitive bellwether of climate change \& variability.
2. In a short-term view, high variability masks the longer trends of climate change \& truth is lost in the Invisible Present.
3. Analyzing lake ice can help us discriminate between climate change \& shorter-term climate variability \& weather.
4. In long-term records, climate trends are visible even with the high short-term variability.
5. The loss of lake ice is also the loss of an under-valued resource that is a part of our sense of place.*
*google: Magnuson \& Lathrop 2014, Lakeline

Changes Occur Quickly and Slowly

Thunder Storms

Seconds Hours Weeks Year Decades Millennia+ Minutes Days Months Years Centuries

So be aware \& use what we looked at today to understand long-term change

Do not fall victims to living in:

The Invisible Present The Invisible Place

Mendota's ice ridges mirror the complex variability

We are losing winter as we knew it.

We are degrading our "sense of place."

If you see something, do something.
What do you think we should do?

