

Presentation Outline

- What is internal loading?
- How does an alum treatment work?
- How do you determine how much alum to add?
- How effective is an alum treatment?
 - When is it effective?
 - When does it not work?
- How long does a treatment last?
- The East Alaska Lake experience

What is Internal Nutrient Loading?

- Chemical binding
 - Calcium-carbonate stable bind
 - Iron
 - Oxic conditions binds with phosphorus
 - Anoxic conditions releases phosphorus

What is Internal Nutrient Loading?

- High hypolimnetic phosphorus concentrations
 - Indication that internal loading is likely

Internal Loading in Different Lake Types

Stratified lakes (dimictic)

- Lakes that only mix in the spring and fall
- Internal load more important the following summer
- Mixed lakes (polymictic)
 - Lakes that mix during the summer
 - Internal load impacts the same summer

Initial Signs that Internal Loading may be Significant

Predictive phosphorus from watershed modelling is much lower than measured lake phosphorus

Hypolimnion is anoxic and phosphorus concentrations exceed

concentrations

ading

phosphorus and significance of internal loading

Alum Treatment

- What is it?
 - Phosphorus inactivation
 - Aluminum Sulfate Addition
 - Forms aluminum hydroxide floc
 - Floc settles to the bottom of lake "dragging" phosphorus with it.
 - Floc forms barrier to sediment phosphorus release
 - Binds sediment phosphorus

Alum Treatment

- Aluminum toxicity
 - Based upon pH

Also Important is a Lake's Alkalinity

Alkalinity is a lake's acid buffering capacity

A hardwater lake naturally has enough buffering capacity to prevent Al toxicity

A softwater lake has a lower alkalinity which means it has less capacity to buffer the acidic alum. A base, sodium aluminate is added

Sediment Phosphorus

One large source of internal loading is the lake sediments

- The amount of internal loading is dependent upon the amount of different forms of sediment phosphorus
 - Calcium bound phosphorus not a problem
 - Organic phosphorus can slowly become available
 - Iron bound phosphorus very mobile

How Much Alum to Apply?

- Progression of more accurate dosing
 - Jar tests
 - Past project experiences
 - Dosing based upon mobile phosphorus in the sediments

What Lakes are Good Candidates?

- Phosphorus budget is important
- Minimize the external load

Good Candidate Not Good Candidate

How Long Does a Treatment Last?

Huser et al.

Mean long

Mean long

Main fact

Correct do

Dimictic la

 Lakes with generally l

Moderate shorten th

ke treatments

-- 21 years

nictic) -- 5.7 years

actor

polymictic lakes

ger because is enter the lake

ivorous fish

Historic Overview

- 1999 Management Planning Study
 - Baseline studies to understand lake ecosystem
 - Determined lake was productive because of past and present impacts
 - ✓ Agricultural runoff
 - ✓ Septic systems
 - **✓ Cheese factory discharge**
 - Internal loading?

Historic Overview

- 2005 Alum Treatment Feasibility Study
 - Measured hydraulic and phosphorus loads entering from inlet (West Alaska outlet) and draintile outfall.

Historic Overview

- 2005 Alum Treatment Feasibility Study
 - Modeled internal phosphorus loading and found it to be significant
 - Overall: Lake not ready for alum treatment
 - Recommended:
 - Septic inspections and corrections
 - ✓ Construction of sedimentation basin to minimize draintile inputs

Alum Treatment

Would an alum treatment be good for East

Alaska

Mode Alask

Must into into into quali

30 Ilt on East

akes it ts water

Alum Treatment

Would an alum treatment be good for East Alaska Lake?

Internal Load Modelling

2004-2010 In-lake Summer Phosphorus Average: 37 μg/l

	External .oad (lbs)	Internal Load (lbs)	In-lake P Ave (µg/l)	Secchi Ave (Feet)
Original	77	95	37	4.0
Predicted after Alum Treatment				
90% Int. Load Reduction	77	9.5	23	7.3
	Increase Secchi disk by 3.3 on average			

Onterra, LLC

Lake Management Planning

Treatment Cost Recommended Treatment

Treat 10' and deeper

Dose to bind 90% of Phosphorus in top 10cm of sediment

Cost: \$125,000

Secondary Treatment

Treat between 5'-10'

Reduce phosphorus available to filamentous algae

Cost: \$40,000

Total Cost: \$165,000

Alum Applied October 2011

Alum Applied October 2011

Alum Layer in Sediment Core One Year Later

Alum Treatment Results

Alum Treatment Results

Alum Treatment Results

Thank You

Many of the graphics used in this presentation were supplied by:

