

62 Long Term Trend Lakes

Goals:

monitor long-term trends in lakes provide context for other lake data

Monitoring:

Spring and 3 X's in summer:

Secchi depth

Temperature/D.O. profile

Total Phosphorus

Chlorophyll a

Conductivity (optional)

pH (optional)

1 X in summer:

Color

NO2-NO3, TKN

5 year cycle:

Ca

Mg

CLMN Role:

Monitor 2 X's in summer

In 2014, CLMN monitored 34 of 62 LTT Lakes

Directed Lakes

Goals:

Obtain chemical, physical & biological data for assessment AND lake management on new lakes

Monitoring:

- 1 Plant point-intercept survey
- 1 Shoreland Habitat survey
- 3 Water chemistry samples

CLMN Role:

Collect chemistry data for assessment needs (6 samples in 2 years)

Who can accomplish Directed Lakes Monitoring?

DNR Lake Staff

- Build capacity for new monitoring workload
- Trainings for plant PI surveys
- Trainings for shoreland habitat surveys
- Equipment

Citizens

 Initiate "short-term" citizen monitoring for water chemistry

Total Phosphorus

Trend Lakes: keep 277 lakes with ≥ 10 years of data

"Condition" Lakes: 233 lakes with < 10 years of data

Potential New CLMN Parameters

- lake levels
- temperature loggers
- blue-green algae
- aquatic plant surveys
- nearshore water transparency & chemistry

Lake Level Monitoring

 Staff install and survey gages in spring and fall

 Volunteer reads staff gage at least monthly (ideally weekly)

Volunteer coordinators
 work with volunteers:
 training, data entry, quality
 assurance

Temperature Loggers

Goals:

Obtain continuous temperature data on lakes to improve thermal models and to monitor climate change

Monitoring:

Field season 2015: logger attached to a pier on 30 lakes (Gretchen Hansen)

Future efforts: 1 logger near surface & 1 near sediment at deepest spot or buoy with temperature loggers at 1-m intervals

CLMN Role:

Deploy, check on, and retrieve loggers New lakes to calibrate thermal models

Blue Green Algae

Goals:

- 1. Blue green algae surveillance
- 2. Algal species composition, including blue green algae
- 3. Frequency of blue green algae blooms

Monitoring:

- 1. Citizens look for blooms and send in photos
- Volunteers collect a water sample below surface at deep point of lake and send in for cell counts, density, and algal identification
- 3. Volunteers collect water samples as in #2, but only look for blue green algae (~\$150/sample)

CLMN Role:

Volunteers collect data

Aquatic Plant Rapid Assessment

Goal: Assess lake health

- Transects at 10 stations
- Identify Growth Form

Rake Fullness

Near-shore Water Quality

Goals:

Obtain water quality information near-shore on large lakes that may be heterogeneous. Ultimate uses are for forecasts and water quality reports for public beaches, etc.

Monitoring:

Water Clarity
Nutrients
Chlorophyll a
Monitor on beaches or piers

CLMN Role:

Monitor clarity, collect water samples

Clean Lakes Alliance

Future Citizen Monitoring

- Short-term Chemistry
- New parameters
 - lake levels
 - temperature loggers
 - blue-green algae
 - aquatic plant surveys
 - nearshore water transparency & chemistry
- Training
- Reports
- New opportunities
- Improvements