

Why do similar lakes with similar TP concentrations display very different levels of primary productivity?

Cyanobacteria (blue-green algae)

[N] [P]

 N_2

Molot et al., 2014. A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. *Freshwater Biology* doi: 10.1111/fwb.12334

Summer 2013 Sampling

- 5 visits
 - May 14-16, June 28-July 2, August 8-11,
 September 3-6, October 22-25
- Profiles (T, DO, pH, etc.)
- Chlorophyll, Phosphorus (TP, ortho-P),
 Nitrogen (NH₃-N, NO₂+NO₃, TKN), DOC
- Phytoplankton
- Zooplankton

Seasonal Trends – Phosphorus and chlorophyll

Nutrient Limitation - P vs. N

Nutrient Limitation – Seasonal

	May	Jun/Jul	Aug	Sep	Oct
Amacoy Lake	neither	both	both	Р	Р
Clear Lake	neither	neither	both	neither	Р
Enterprise Lake	N	both	N	both	Р
Big Lake	neither	neither	both	N	neither
Potter Lake	neither	neither	N	N	neither
North White Ash Lake	neither	N	Р	neither	Р

Seasonal Trends - Temperature

Seasonal Trends – Dissolved Oxygen

Phytoplankton

Summary of Findings

- All six lakes experienced seasonal N limitation
- High chl:P lakes tended to be N+P limited
 - N fixation leads to higher chl per unit P
- Cyanobacteria more abundant in high chl:P lakes + Potter Lake
 - N-fixers only in high chl:P lakes
- High chl:P lakes were anoxic near bottom
 - Potter may have been anoxic in deep hole

Nitrogen, Anoxia, and Cyanobacteria

What about low chl:P lakes?

- No clear commonality among Big, Potter, or North White Ash; Likely site-specific factors
 - Dense macrophytes (N. White Ash)
 - Stained Water (Big)
 - Herbicide treatment? (Potter)

High chl:P lakes

Molot et al., 2014. A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. *Freshwater Biology* doi: 10.1111/fwb.12334

Polymictic lakes and chl:P

- All study lakes were polymictic
- Internal P loading often high in polymictic systems -> N limitation more likely
- High productivity -> anoxia (Fe²⁺ available)
- Relatively shallow -> short migration path
- Ideal environment for cyanobacterial dominance

Lathrop-Lillie Stratification Index

Management options for polymictic lakes

- Reduce P loading
- Immobilize sediment P
 - Alum
 - Aeration
- Increase algal grazing through fisheries management
- Site-specific P criteria

Next Steps

- Investigate Molot model
 - Sample hypolimnetic Fe and P
 - Cyanobacteria migration
- Develop site-specific criteria for some lakes
 - Polymictic lakes unique
 - Looking at algal community
 - More frequent monitoring in polymictic lakes?