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ABSTRACT 

As the human demand for freshwater natural resources such as fish and drinking water 2 

increases, we may rely more heavily on models to predict the response of aquatic ecosystems to 

natural and anthropogenic disturbance. Theses models in turn implicitly depend on the 4 

underlying spatial distribution of organisms. In terrestrial ecosystems, increased natural resource 

utilization has transformed habitat and changed the spatial distribution of organisms, with 6 

subsequent negative effects on biota. Recent studies in lakes demonstrate that human 

development of lakeshores alters the physical habitat and nutrient cycles. The impact of such 8 

disturbance by humans on the spatial distribution of aquatic organisms however, remains 

unknown. Here we quantify the effect of lakeshore development on the spatial distribution of 10 

fishes in 23 lakes in the U.S. Pacific Northwest. We found a significant decrease in the spatial 

aggregation of fishes with increased shoreline development by humans, reflecting a loss of 12 

refugia and resource heterogeneity that favor aggregation among fishes. We also found that lakes 

with a high perimeter to surface area ratio and a relatively shallow littoral zone had much higher 14 

levels of fish aggregation, suggesting the importance of terrestrial inputs to lakes. Finally, we 

found a marginally significant decrease in fish spatial aggregation with increased total 16 

phosphorus concentration, but no effect of chlorophyll concentration, water transparency, the 

predator;prey ratio, or number of species on fish spatial distributions. These results suggest that 18 

anthropogenic modification of shorelines is significantly altering the spatial distribution of 

important aquatic organisms, and that these changes may have important implications for 20 

predictive modeling of ecosystem dynamics. 

 22 
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INTRODUCTION 

Humans increasingly impact the world’s ecosystems through a variety of disturbances 2 

such as changing land use, species introductions and extinctions, alteration of nutrient cycles, 

and the use of >50% of the available fresh water (Vitousek et al. 1997). As the global human 4 

population grows we will rely more heavily on aquatic resources for food, drinking water, and 

recreation (Naiman et al. 1998, Naiman and Turner 2000, Jackson et al. 2001b). In light of these 6 

increased demands, ecologists are challenged with making predictions about the response of 

aquatic ecosystems to changes in the abiotic and biotic environment under a variety of natural 8 

and anthropogenic disturbances (Pace 2001, Carpenter 2002). Central to these predictions are 

models that incorporate predator feeding and prey mortality rates; these models depend 10 

implicitly on the spatial distributions of interacting organisms. Furthermore, for simplicity these 

models often assume that there is no systematic change in the spatial distribution of organisms 12 

with human disturbance. Nevertheless, this critical assumption remains largely untested for 

aquatic systems (Boisclair 2001), despite some evidence showing that human-mediated effects 14 

can alter habitat use by fishes with cascading effects on lower trophic levels (Jeppesen et al. 

2000, Olin et al. 2002). Furthermore, in terrestrial systems, anthropogenic habitat loss and 16 

fragmentation has altered the spatial distribution of organisms, and changed competitive and 

predator-prey interactions (Debinski and Holt 2000, Haila 2002).  18 

Lakeshores throughout North America and Europe are increasingly being developed and 

altered by humans (Ostendorp et al. 1995, Christensen et al. 1996, Jennings et al. 1999, 20 

Radomski and Goeman 2001, Beeton 2002, Gulati and van Donk 2002). Accompanying this 

development are anthropogenic stresses to lake ecosystems including disruption of nutrient 22 

cycles resulting in eutrophication (Jeppesen et al. 1997, Carpenter et al. 1998, Garrison and 
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Wakeman 2000, Moore et al. 2003) and changes in fish community composition (Jeppesen et al. 

2000, Olin et al. 2002), introduction of exotic species (Jackson et al. 2001a), and the exploitation 2 

of predatory fishes by recreational and commercial fisheries (Pauly et al. 2001, Post et al. 2002). 

Furthermore, transformation of nearshore habitats adversely affects fish communities because 4 

they form part of the physical template on which lake ecosystems lie (Jackson et al. 2001a, 

Olden and Jackson 2001, Olden et al. 2001). Some direct impacts of lakeshore residential 6 

development on the physical structure of lake habitats include bottom substrate modifications 

(Beauchamp et al. 1994) and the removal of coarse woody debris (Christensen et al. 1996) and 8 

aquatic vegetation (Ostendorp et al. 1995, Radomski and Goeman 2001). These habitat 

modifications have been associated with a reduction of fish growth rates (Schindler et al. 2000), 10 

altered trophic interactions (Jeppesen et al. 1997), and have the potential to alter fish spatial 

distributions (Schindler and Scheuerell 2002).  12 

Detecting changes in fish assemblages caused by human disturbance usually requires 

observations before and after the disturbance (Lester et al. 1996), but such studies are often 14 

protracted, expensive, and confounded by multiple time-dependent processes. We took an 

alternative, comparative approach across lakes, which is useful in ecosystem studies where 16 

experimental replication is impossible (Schindler 1998) and more rapid feedback is desired. To 

evaluate the cumulative effect of lakeshore development on the spatial distribution of fishes, we 18 

sampled 23 lakes in western Washington, USA, and southwestern British Columbia, Canada. 

These lakes spanned a residential development gradient in the greater Seattle, WA metropolitan 20 

area, which has a current human population near 2 million that grew almost 20% in the last 10 

years. The intensity of lake shoreline disturbance by humans is highest near the Seattle urban 22 

center and then generally decreases with distance from the urban area. Here we explored whether 



Scheuerell & Schindler  5 

human disturbance to lakeshores has any consequences for the spatial distribution of fishes. We 

also examined the potential role of the lakes’ physical morphology on fish spatial distributions 2 

because of the natural interaction between morphology and physical habitat available to aquatic 

organisms. Lakes with very steep sides have relatively little littoral habitat compared to pelagic 4 

habitat (Wetzel 2001). Lakes with high perimeter to area ratios can receive relatively high inputs 

of terrestrial matter compared to more circular lakes (Wetzel 2001). Finally, we compared the 6 

relative role of cultural eutrophication (water clarity, total phosphorus and chlorophyll 

concentrations), species diversity, and the ratio of predators to prey in explaining the observed 8 

variance in fish spatial distributions. 

 10 

METHODS 

For our analyses, we considered two multiple regression models to explain the observed 12 

variation in fish spatial distributions. Using backward stepwise regression, we began with the 

following 8 predictor variables: housing density, shoreline morphometry (DL), basin 14 

morphometry (DV), total phosphorus concentration, chlorophyll concentration, extinction 

coefficient (k), the predator:prey ratio, and the number of species. Model 1 uses the number of 16 

houses per km of shoreline whereas Model 2 uses the number of houses per ha of lake surface 

area. 18 

Lake data. We sampled 10 of the lakes during 11-20 August 1998 and the other 13 

during 23-31 August 1999. All of the study lakes were located in western Washington, USA, and 20 

southwestern British Columbia, Canada, in a region east of Puget Sound and west of the Cascade 

Mountains in an attempt to control for differences in geology, elevation, lake size, and 22 

morphometry. Information on lake surface area, shoreline length, mean depth, and maximum 
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depth was obtained from the Washington State Lake Survey Data (Bortleson et al. 1976) and the 

British Columbia Ministry of Sustainable Resource Management (http://www.gov.bc.ca/srm). 2 

The elevation of all lakes ranged from 35–520 m above sea level. The average lake surface area 

was 22 ha (± 3.4 SE), the mean depth across all lakes was 8.6 m (± 1.1 SE), and the average 4 

maximum depth was 18 m (± 2.5 SE). All of the WA lakes had public access for boating and 

fishing, but the BC lakes were located at the University of British Columbia Malcolm Knapp 6 

Research Forest and therefore had neither public access nor shoreline development. 

We used the number of nearshore houses per km of shoreline and the number of 8 

nearshore houses per ha of lake area as general indices for the intensity of human disturbance. 

We also chose three specific indicators of cultural eutrophication as potential predictors: 1) 10 

hypolimnetic total phosphorus (TP) concentration (µg L-1), 2) mean epi- and metalimnetic 

chlorophyll a concentration (µg L-1), and 3) the light extinction coefficient (k, m-1). Lake water 12 

was collected from depth using an 8 L Van Dorn bottle. Following persulfate digestion and 

subsequent reaction with molybdate and stannous chloride, TP concentration was determined 14 

colorometrically by reading the samples on a spectrophotometer at 720 nm and comparing them 

to a standard curve (Anonymous 1999). Chlorophyll a concentration was determined by filtering 16 

lake water through 0.7 µm GF/F glass-fiber filters, freezing them, extracting with methanol, and 

then reading on fluorometer and correcting for pheophytins (Marker et al. 1980). Light was 18 

measured at 1-m intervals using a Li-Cor Model 192SA light sensor. For each lake, we fit k from 

the standard equation for light extinction, where Lz = L0 exp[-kz], Lz is the amount of light at a 20 

given depth z, and L0 is the amount of light at the lake surface. 

We chose two simple metrics to describe the physical morphology of our study lakes. 22 

First, we used the volume development index (DV) as a measure of the lake basin morphometry. 
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The index is expressed as the ratio of a lake’s mean depth to its maximum depth (Wetzel 2001), 

such that for a conical basin DV = 0.33 and for a perfectly cylindrical basin DV = 1.0. Second, we 2 

used the shoreline development index (DL) to classify the shape of the lake shoreline relative to 

its area, where DL = 0.5P(πA)-0.5, P is the length of shoreline, and A is the lake surface area 4 

(Wetzel 2001). For these purposes we adopt the convention of referring to DL as the shoreline 

morphometry index to avoid confusion with our classification of the intensity of human shoreline 6 

development. 

Fish data. We obtained direct estimates of the fish community composition in each lake 8 

with 10-12 unbaited minnow traps and 2 variable-mesh gill nets, set for approximately 2 hours. 

The minnow traps had 0.25 inch mesh and were submerged in 0.5-2 m of water in the littoral 10 

zone. Each gillnet was 33 x 2 m and consisted of five equal-area panels with bar mesh sizes of 

1.3, 2.5, 3.8, 5.1, and 6.4 cm, and was set perpendicular to shore along the bottom. We gathered 12 

additional information on the fish community composition from Washington Department of Fish 

and Wildlife stocking and sampling records (http://www.wa.gov/wdfw) due to our low CPUE 14 

presumably resulting from low fish densities and relatively short soak times. The fish community 

was similar among all lakes and consisted of naturally reproducing and stocked populations of 1-16 

5 of the following species: largemouth bass (Micropterus salmoides), pumpkinseed sunfish 

(Lepomis gibbosus), black crappie (Pomoxis nigromaculatus), yellow perch (Perca flavescens), 18 

brown bullhead (Ictalurus nebulosus), rainbow trout (Oncorhynchus mykiss), or cutthroat trout 

(O. clarkii). 20 

We measured the three-dimensional locations of fish using a BioSonics DT6000 split-

beam echosounder operating at 200 kHz with an elliptical transducer consisting of -3 dB beam 22 

angles of 6.7 and 13.5 degrees; the narrow beam was parallel to the direction of travel. We used 
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a 0.4 ms pulse at a rate of 4 s-1 with the lower threshold set at -70 dB. Using the BioSonics 

Visual Acquisition 4.0 software, all incoming signals were digitized at the transducer and then 2 

stored on a computer hard drive for later analysis. The transducer was suspended from a pole 

mount immediately under the water surface and towed alongside the boat at a speed of 10 km hr-4 

1 as the survey followed 8-14 predetermined transects across each lake over a total distance of 

1300-4200 m (mean = 2500 ± 130 SE). Acoustic transects were selected non-randomly in an 6 

effort to provide adequate survey coverage without biasing any particular depth contours, 

embayments, docks, houses, etc. The total sample volume was 5800-160000 m3 (mean = 30000 8 

± 8300 SE). All hydroacoustic surveys occurred between 11:30 and 17:30. Fish density and the 

depth and size of individual echoes were obtained using the BioSonics DT Analyzer 4.0 10 

software, but we only analyzed depths <1 m due to near-field effects of the acoustic beam. For 

these analyses we combined all potential prey fish together and classified all targets less than -46 12 

dB as prey fish, which correspond to fish lengths <100 mm (Burczynski and Johnson 1986). All 

subsequent analyses only refer to these small fishes. Densities of predator and prey fishes were 14 

obtained by multiplying the total fish density by the proportion of all target strength values 

within each class (prey < -46 dB; predators > -40 dB). We obtained simultaneous measurements 16 

on the x-y coordinates of the fish by coupling the hydroacoustics to a sub-meter accurate 

Trimble® AgGPS 132 differential global positioning system (DGPS). 18 

We assessed the degree of spatial aggregation among fishes using a method developed 

for three-dimensional point process patterns (Scheuerell 2002) based on the methodology for a 20 

two-dimensional case (Coomes et al. 1999). This method involves measuring the locations of 

individual organisms in three dimensions with hydroacoustics coupled to a differential global 22 

positioning system (DGPS), and then calculating the nearest neighbor distances among 
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organisms. For each lake, we compared the observed cumulative probability (Gobs) of a fish 

having a nearest neighbor within a given radius to that expected in a random distribution (GPV) 2 

assuming a three-dimensional Poisson process. We compared the two probability distributions 

through the test statistic dwobs, which equals the maximum difference between Gobs and GPV over 4 

all radii examined (0.2 - 5.0 m). This statistic therefore tests for aggregation over all spatial 

scales within the range of radii considered (Coomes et al. 1999). We estimated the null 6 

distribution of dw by comparing GPV to Gobs from 1000 Monte Carlo simulations of a three-

dimensional Poisson process. The critical values of dw were then calculated from the upper tail 8 

of the null distribution such that the 95th percentile indicated dwcrit for P = 0.05 (sensu Coomes et 

al. 1999). When the ratio of dwobs:dwcrit > 1, the spatial distribution is significantly aggregated. 10 

We used this ratio as a measure for the intensity of aggregation among fishes such that large 

values indicate strong aggregation and values approaching zero are randomly distributed in 12 

space. To account for sampling biases associated with the beam geometry, we distributed points 

randomly within a large volume according to a three-dimensional Poisson process and then 14 

sampled them using an artificial hydroacoustics beam using 500 Monte Carlo simulations. We 

then calculated the edge correction as the mean difference between the observed GPV and the 16 

expected GPV in an infinite universe (Coomes et al. 1999). 

 18 

RESULTS AND DISCUSSION 

Both human development of lakeshores and lake morphometry were related to the spatial 20 

distribution of fishes (Table 1). In the stepwise multiple regression, housing density had the 

strongest effect on the spatial aggregation of fishes, such that as housing density increased, the 22 

spatial aggregation of fishes decreased (Figure 1A, 1B). This pattern held for either case when 
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we used the number of houses per km of shoreline or the number of houses per ha of lake surface 

area, although the overall effect of houses per area was slightly more than that of houses per 2 

shoreline (Table 1). Furthermore, in both cases the basin morphometry index (DV) had the next 

strongest impact (Table 1). DV had a negative effect on the degree of spatial aggregation among 4 

fishes (Figure 1D), indicating that as the lake basin became more cylindrical in shape, fish 

aggregation decreased. Once the ratio of mean depth to maximum depth reached 0.5, the fish 6 

showed essentially no aggregation behavior. We also found a significant positive effect of 

lakeshore morphometry (DL) on the degree of spatial aggregation among fishes (Figure 1C), 8 

demonstrating that fish were more aggregated in lakes with increasingly complex shorelines. 

However, DL was only a significant predictor in the case where we used the number of houses 10 

per shoreline, and in that case only marginally so (Table 1). Lakes with a high perimeter to area 

ratio and a relatively shallow littoral zone may offer more habitat heterogeneity and refuge from 12 

predation, which could subsequently affect the spatial distribution of fishes (Olden and Jackson 

2001). 14 

Of the cultural eutrophication variables we examined, only total phosphorus had a 

significant effect on the degree of spatial aggregation among fishes, but it was relatively weak 16 

and only occurred when we used houses per area as the metric for human disturbance (Model 2, 

Table 1). The trend was for a decrease in fish spatial aggregation with increased TP 18 

concentration (Figure 1E). Although it was not significant, increased chlorophyll concentration 

also showed a pattern toward decreased aggregation (Figure 1F). This could suggest that 20 

decreased water clarity associated with increased nutrients and algae also decreased fish 

aggregation, as fish spatial distributions are often affected by light (Sogard and Olla 1993, 22 

Miyazaki et al. 2000, Scheuerell and Schindler 2003). However, we found no relationship 
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between our direct measure of water clarity (k) and fish spatial aggregation (Figure 1G). On the 

other hand, it might suggest that changes in the lower food web structure associated with 2 

increased anthropogenic activities alter the spatial distribution of fishes through some sort of 

bottom-up forcing associated with shifts in fish diets from predominantly benthic in undeveloped 4 

areas to more pelagic in heavily impacted areas (Schindler and Scheuerell 2002). Predators often 

exhibit strong effects on the spatial distribution of fishes (Werner and Gilliam 1984, Lima and 6 

Dill 1990, Lima 1998). However, we failed to find any statistical relationship between the ratio 

of predators to prey and the degree of spatial aggregation in our study lakes (Table 1, Figure 1H). 8 

We also found no effect of the actual predator density on spatial aggregation (linear regression, 

R2 = 0.094, P > 0.10). 10 

The density of organisms is implicitly coupled to their spatial distribution; as density 

increases, the expected distance between neighbor’s decreases. The average density of prey 12 

fishes in the study lakes was 0.097 m-3 (± 0.024 SE) and the mean density of predatory fishes 

was 0.0011 m-3 (± 0.00038 SE). Neither the density of prey fishes nor predatory fishes varied 14 

across the residential shoreline development gradient (linear regression, prey: R2 = 0.005, P > 

0.10; predators: R2 = 0.0004, P > 0.10). It is important to point out that the spatial statistic we 16 

used (dw) explicitly accounts for the density of organisms, and is therefore robust to potential 

biases associated with differences in fish density among lakes. We also found no significant 18 

change in the mean acoustic target strength (i.e. fish size) with residential development (linear 

regression, R2 = 0.15, P > 0.10). The mean (±SE) number of fish caught per lake was 6.3±0.83 20 

and 4.0±0.49 in the gillnets and minnow traps respectively, which was generally too low to 

assign reasonable species identification to the acoustic density estimates. Therefore, we used the 22 
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trap and net data to assess species presence and community composition, and relied on the 

hydroacoustics for fish density. 2 

Human disturbance has been associated with changes in fish community composition in 

streams (Vila-Gispert et al. 2002), wetlands (Brazner 1997), lakes (Jeppesen et al. 2000), and 4 

nearshore marine environments (Guidetti et al. 2002). Differences in community composition 

could affect the spatial distribution of fishes through predator-prey interactions (Brabrand and 6 

Faafeng 1993) or other behavioral mechanisms (Olden and Jackson 2001). Although there were 

subtle differences in the fish community composition among our study lakes (Figure 2), we 8 

found no effect of the number of species on the spatial aggregation of fishes in a stepwise 

multiple regression context (Table 1) or when we considered species number by itself (Pearson 10 

correlation, r = 0.062, P > 0.10). Furthermore, we found no significant effects of the presence or 

absence of any particular fish species on the spatial distribution of fishes (Kruskal-Wallis test, H 12 

= 4.2, P > 0.10). Lastly, we found no difference in the mean number of fish species in lakes with 

significant aggregation versus lakes without (Mann-Whitney test, U = 91, P > 0.10). This 14 

suggests that the cumulative effects of humans and lake morphometry are more important than 

the actual fish species assemblage in lakes such as these with relatively simple fish communities.  16 

Our sampling design and methodology was somewhat biased toward the pelagic habitat 

and deeper fish due to the cross-lake transects and the conical shape of the hydroacoustic beam. 18 

However, there should not have been any systematic bias against any particular lake because 

transects did not follow any specific depth contour, the length of which would differ among 20 

lakes. Furthermore, we also note that our analysis of the sampled fish explicitly accounts for the 

beam geometry and therefore doesn’t introduce any bias associated with fish depth. Given the 22 
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possible bias toward pelagic habitats, our results using the number of houses per ha of lake 

surface area may be more appropriate (Table 1, Model 2). 2 

Our comparisons relied on relatively simple, linear models to explain differences in the 

spatial distribution of fishes. Certainly the ecological processes occurring throughout the lakes 4 

vary spatially and are affected by a variety of internal and external processes (Turner and 

Carpenter 1999). This observed variation may result from nonlinear interactions among 6 

ecosystem components, such as predators and prey (De Roos and Persson 2002). Largemouth 

bass were the dominant piscivore in our lakes, occurring in 15 of 23 lakes across a wide range of 8 

human development intensity (Figure 2). Largemouth bass tend to be highly aggregated in 

undeveloped lakes (Essington and Kitchell 1999), but that appears to change as lakes are 10 

impacted by humans. Furthermore, human-mediated nutrient loading, habitat disturbance, and 

exploitation can abruptly shift lakes to alternative stable states (Scheffer et al. 2001). Finally, 12 

habitats within lakes are not isolated, but are instead connected via biotic and abiotic processes, 

which are likely a function of the physical template (Schindler and Scheuerell 2002). Perhaps our 14 

observed change in the spatial distribution of prey fishes resulted from nonlinear interactions 

among their predators, human impacts, and lake morphometry. 16 

All natural populations demonstrate spatial and temporal variation in their numbers. 

Some of this variability is associated with the physical structure of their habitat. For many years 18 

terrestrial ecologists have paid particular attention to the role of human-mediated habitat 

fragmentation in determining the distribution and interaction among species. These studies have 20 

shown that changes in habitat structure often lead to subsequent variation in the spatial 

distribution of organisms and that these changes must be considered when conserving or 22 

restoring ecosystems (Debinski and Holt 2000, Fahrig 2002, Haila 2002). Only recently have we 
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begun to appreciate analogous anthropogenic disturbances in aquatic ecosystems. Evidence is 

accumulating which shows that human development of lakeshores affects the physical habitat of 2 

lakes and the fish community associated with it (Beauchamp et al. 1994, Christensen et al. 1996, 

Jennings et al. 1999, Schindler et al. 2000, Jackson et al. 2001a, Olden and Jackson 2001, 4 

Radomski and Goeman 2001). This study represents another step toward understanding the 

negative effects of human disturbance on lake ecosystems by showing how the spatial 6 

distribution of fishes changes with increased lakeshore development. We suspect that a 

combination of eutrophication and associated water clarity (Jeppesen et al. 2000, Olin et al. 8 

2002), changes in trophic structure associated with fish exploitation (Post et al. 2002) and 

predation (Brabrand and Faafeng 1993), and degradation of nearshore habitats (Brazner 1997, 10 

Schindler and Scheuerell 2002) all contribute to this response. Furthermore, direct disturbance by 

swimmers and boaters could be perceived as a form of predation risk and alter fish spatial 12 

distributions (sensu Frid and Dill 2002). 

Researchers and managers alike often rely on empirical models of fish production, 14 

nutrient cycling, or contaminant flows to predict the effect of human actions on lake ecosystems 

(Carpenter and Gunderson 2001). For simplicity, these models often ignore or average spatially 16 

explicit features of the biotic and abiotic environments. However, lakes are heterogeneous, three-

dimensional landscapes whose structure is influenced by physical, biological, and human 18 

activities (Riera et al. 2001). Therefore, consideration of the underlying assumptions is critical 

when a model is used to evaluate changes within or among ecosystems (Boisclair 2001). As an 20 

example we show how lakeshore development changes the underlying spatial distribution of 

fishes, which is usually assumed constant across systems. Most of the anthropogenic 22 

disturbances to aquatic ecosystems associated with lakeshore development occur gradually over 
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time (Jennings et al. 1999), which should allow for proactive management in areas where 

development of lakeshores is just beginning (Moore et al. 2003). In these cases, incorporating 2 

knowledge about the interaction between humans and the environment will prove critical to 

understanding and predicting ecosystem dynamics (Carpenter 2002). Given the wide-ranging 4 

negative effects of anthropogenic habitat transformations on organisms in terrestrial ecosystems, 

we suspect that similar effects are prevalent, but unexplored, in aquatic ecosystems. 6 
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Table 1. Results of the backward-stepwise multiple regression analyses to predict the spatial 

aggregation of fishes. Both statistical models began with the following predictor variables: 2 

housing density, shoreline morphometry (DL), basin morphometry (DV), total phosphorus 

concentration, chlorophyll concentration, extinction coefficient (k), the predator:prey ratio, and 4 

the number of species. Model 1 uses the number of houses per km of shoreline whereas Model 2 

uses the number of houses per ha of lake surface area. 6 

 

Model Variable Coef. SE t P r2 

1 intercept 3.1 1.8 1.8 0.096  

 houses -0.038 0.011 -3.5 0.002 0.32 

 basin -6.9 2.3 -3.0 0.007 0.24 

 shoreline 1.4 0.68 2.1 0.050 0.10 

 overall    <0.001 0.66 

2 intercept 6.7 1.1 6.4 <0.001  

 houses -0.40 0.091 -4.4 <0.001 0.39 

 basin -9.1 2.1 -4.4 <0.001 0.24 

 TP -0.014 0.0080 -1.8 0.088 0.09 

 overall    <0.001 0.72 
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FIGURE LEGENDS 

 2 

Figure 1.  Relationship between the spatial aggregation of fishes and A) houses per km of 

shoreline, B) houses per ha of lake surface area, C) shoreline morphometry index DL, 4 

D) lake basin morphometry index DV, E) hypolimnetic total phosphorus concentration, 

F) mean epi- and metalimnetic chlorophyll a concentration, G) light extinction 6 

coefficient k, and H) the ratio of predators to prey (by density). The degree of spatial 

aggregation equals the ratio of dwobs to dwcrit. Values >1 indicate significant 8 

aggregation at α = 0.0022 (= 0.05/23 comparisons). See methods for descriptions of 

DL, DV, and k. 10 

 

Figure 2. The total number of fish species and community composition for the 23 study lakes 12 

ranked in order of increasing housing density (listed in parentheses, km-1). See 

methods for individual species names. 14 
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