Rain Gardens - Part of the Solution to Storm Water Problems

Prepared by

Roger Bannerman
WDNR

Increases in Urban Runoff for Lake Mendota from 2000 to 2020

- Amounts of Urban Runoff for 2000:

5,600,000,000 gallons or 17,000 acre-feet

- Amounts of Urban Runoff for 2020:

8,800,000,000 gallons or 27,500 acre-feet
(Increase of 57\%)

Impacts of Urbanization on Stream Baseflows

Impacts of Imperviousness on

Surface and Groundwater Quantities

Type of Resource	Increase Imperviousness From 2 to 18\%	Increase Imperviousness From 2 to 60\%
Stream Baseflow	-20\%	Dry Stream
Surface Runoff	+ 90\%	+485\%
Regional Groundwater Levels	-10\%	-55\%

Predicted Temperature Increase

 Lowes Creek, Eau Claire
Mean (${ }^{\circ}$ F) Maximum (F)

Existing
62
71
Developed
67 82 (35\% Impervious)

Brown Trout Optimum $=\mathbf{6 6}{ }^{\circ} \mathbf{F}$

The Hydrologic Cycle

The
 Runoff Management Rules

Presentation by the
Wisconsin Department of Natural Resources

Post-Construction Performance Standards - Peak Runoff

- Reduce peak runoff discharge rates, MEP, as compared to pre-development conditions for the 2 - year, 24 hour design storm.

Post Construction Infilltration Performance Standards

By design, infilltrate sufficient runoff volume so that the post-development average annual infiltration volume shall be a portion of pre-development infiltration volume.

Residential
90\% (1\% Сар)

Non-residential

60\% (2\% Сар)

The Problem: Conventional Site Design

Collect

Concentrate Convey
Centralized
Control

Good Drainage Parsodiam

Conventional Pipe and Pond Centralized Control

Distributed Small-scale Controls

Maintaining Natural Fyadrology Functions

BIORETENTION FILTER

BIORETENTION \% POLLUTANT REMOVAL

		Cu	Pb	Zn	P	TKN	NH4	NO3
	Upper	90	93	87	0	37	54	-97
O	Middle	93	99	98	73	60	86	-194
\mathbf{X}	Lower	93	99	99	81	68	79	23
	Field	97	96	95	65	52	92	16

Dr. Allen Davis, University of Maryland

Landuse in the Lake Wingra Watershed

\% Runoff Volume by Landuse for 4 Subwatersheds

\% Annual Runoff Volumes from Source Areas in 4 Subwatersheds

\square Roof
\square Plots
\square Streets
\square Lawns
\square HWY
\square Other

Sources of Annual Runoff Volume in Medium Density Residential

Plant List for Backyard Rain Gardens

Shade Garden

- Jacobs Ladder
- Celandine Poppy
- Short's Aster
- Zig-Zag Goldenrod

Middle \& Big Garden

- Blue Flag Iris
- Purple Cone Flower
- Shooting Star
- Sweet Black-eyed Su.
- Smooth Penstemon
- Heartleaf Blue Aster
- Ohio Goldenrod
- Fire Pink
- Silky Wild Rye
- Northern Sea Oats

Value of Using Native Plants

- Deeper roots - absorbs more water
- Uses no fertilizer
- Uses little or no pesticides
- Easy maintenance after first year
- Does not require watering in droughts after establishment

\% Annual Runoff Volume by Source Area for St Francis

40\%

\square Roofs
\square Playground
\square Driveways
\square Sidewalks
\square Street Area
\square Lawns
\square Other Pervious
\square Other Impervious

Elements of Low Impact Design for St. Francis Development

- Rain Gardens
- Infiltration Trenches in Street Boulevards
- Two Regional Infilltration Basins
- Reduce Street Width from 36 to 32 Feet
- Protection of Riparian Buffer

Steve Apfelbaum: Applied Ecological Services

Infiltration Goals for Area 4 at St Francis

Type of Volume Calculation	Annual Infiltration Volume, inches	Annual Runoff, inches
Predevelopment	28.0	0.8
90% Goal	25.2	3.6
No Controls	24.4	4.4
Volume Change	0.8	0.8 (18\% of post annual runoff)

Levels of Control for Each Infiltration Device in Area 4

Type of Practice	Additional Infiltration	Percent of 0.8 inches	\% Change to Post Runoff
Rain Garden (1/house)	0	0	0
Infiltration Trenches	3.7	460%	$84 \%(0.7 "$ runoff)
Infiltration Basin	4.4	550%	$98 \%(0.1 "$ runoff)
Rain Garden 60\% of lawn)	0.5	62%	$11 \%(3.9 "$ runoff)

West Bend, WI

Cedar Hill Site Design, Crossplains WI

Explanation
Wetpond Infiltrations Basin
Swales Sidewalk
Driveway
Houses
Lawns
Roadway
Woodlot
$500 \quad 0 \quad 5001000$ Feet

Percent Runoff Volume by Source Area for Cedar Hills

Elements of Low Impact Design for Cedar Hills Development

- Grass Swales
- Detention Pond
- Infiltration Basin
- Reduce Street Width (From 36 to 33 feet - park one side of street)

Reductions Goals in Runoff Volume for Cedar Hills

Type of Volume Calculation	Annual Infiltration Volume, in.	Annual Runoff Volume, in.
Pre- development	28.0	0.8
90% Goal	25.2	3.6
No Controls	22.5	6.3
Volume Change to Achieve 90\%	2.7	2.7 (43\% of Postdevelop. Runoff)

Volume Reduction Estimates for Practices at Cedar Hills

Type of Practice	Addfitional Infiltration ,inches	$\%$ of 2.7 inch goal	\% Reduction in Annual Postdev. Runoff
33 foot wide streets	0.3	11%	5%
Grass Swales	0.7	26%	11%
Infiltration basin - proper size	1.7	63%	27%
Total	2.7	$\mathbf{1 0 0 \%}$	$\mathbf{4 3 \%}$
Infiltration basin -Actual size	4.6	170%	$89 \%(0.7 "$ runoff)

Infiltration Basin Monitoring

- ISCO refrigerated water-quality sampler
- CS double-bubbler stage sensor
-Tipping-bucket raingage
- H-flume
- Temperature probe

- Marsh-McBirney FLODAR system
> measures stage, velocity and discharge
science for a changing world

Visual Clues to TSS Concentration Variation

Blue $=$ KP

Red = Bourbon

Performance of Low-Impact Design Based on Annual Precipitation

Water Year	Construction Phase	Rainfall (inches)	Volume Leaving Basin (inches)	Percent of Volume Retained (\%)
1999	Pre	33.3	0.46	99%
2000	Active	33.9	4.27	87%
2001	Active	38.3	3.68	90%
2002	Active*	29.4	0.96	97%

[^0]
Benefits of Rain Garden

- Help Protect and Restore Natural Hydrology of Your Watershed
- Trap Pollutants
- Attract Birds and Butterflies
- Attractive Addition to Property
- Enhance Beauty of City

How Big to Make the Rain Garden

- How deep to make rain garden?
- What type of soil is at the site?
- What is the area draining to the rain garden?

Rain Garden Depth

Balance Between

Depth and Surface Area

- Minimize drain time
- less than 1 day.
- Minimize digging.
- Suggest depths between 3 to 8 inches

Selection of Rain Garden Depth Slope Very Important

- Slope $<4 \%=3$ to 5 inches deep.
- Slope of 5 to $7 \%=6$ to 7 inches deep.
- Slope of 8 to 12% = about 8 inches deep.
- Slope > 12 \% suggest another site.

Importance of Soil Type

Higher the Infiltration Rate the Smaller the Rain Garden Surface Area.

- Infiltration Rate of Sandy Soils: 2.5 in/hr
- Infiltration Rate of Silty Soils: $0.5 \mathrm{in} / \mathrm{hr}$
- Infiltration Rate of Clayey Soils: $0.3 \mathrm{in} / \mathrm{hr}$

Determination of Soil Type

- Best method is to have soil analyzed.
- Use soil map - not too dependable because of possible disturbed soils in construction area.
- Use feel of soil.
- Do perk test - six inches deep

Size of Drainage Area

Question: Is the rain garden treating rooftop and lawn or just rooftop runoff?

Calculation of Drainage Area

Size of Roof

Example Calculation

- Length $=100$ feet
- Width $=20$ feet
- L X W = 2000 sq feet
- 2000 sq. ft. / 4 = 500 square feet

Size Factors for Rain Gardens Less Than 30 feet from Downspout - 100\% Control

Type of Soil	3 to 5 Inches Deep	6 to7 Inches Deep	8 Inches Deep
Sandy	0.19	0.15	0.08
Silty	0.34	0.25	0.16
Clayey	0.43	0.32	0.20

Garden Size Calculation for Silty Soils and 4 Inch Depth

Size of Rooftop Draining to Garden X Size Factor = Size of Garden

500 square feet $\mathrm{X} 0.34=170$ square feet

Shape $=10$ feet X 17 feet

Size Factors for Rain Gardens More Than 30

 Feet from Downspout - 100\% Control| Soil Type | All Depths Between 3
 and 8 inches |
| :---: | :---: |
| Sandy | 0.03 |
| Silty | 0.06 |
| Clayey | 0.10 |

Variation in Rain Garden Size with Percent Reduction in Annual Runoff

Size for >30 feet from Downspout and Silty Soils

Size of Bannerman Rain Garden

- Size $=180$ square feet or 30% of roof area.
- Depth is about 3.5 inches.
- Volume of Garden is about 55 cubic feet or it holds about 400 gallons of water.
- Volume is equal to the runoff from a 1 inch rainfall. Controls 60% of annual roof runoff.
- Infiltration rate is about 2 inches/hour

downhill stake
string uphill stake ${ }_{\uparrow}^{\downarrow}$
 , here

downhill

stake

List of Plants in Bannerman Rain Garden

- Blue False Indigo
- Red Milkweed
- Nodding Pink Onion
- Prairie Blazing Star
- Sq. Stemmed Sticky Monkey
- Sweet Black-Eyed Susan
- Ohio Goldenrod
- Prairie Dropseed
- Early summer
- Summer
- Summer
- Summer
- Summer
- Fall
- Fall
- All

Maintenance of Rain Gardens

- First year requires vigilant weeding.
- Some watering at first, especially plants on berm.
- Dead plant debris should be removed in the spring.

Cost of Rain Gardens

Cost of Landscape Contract in Dane County is about $\$ 12$ to $\$ 15$ per Square Foot. Includes Design, Construction, Plants, and Planting.

JORDAN COVE URBAN WATERSHEDPROJECT Waterford, Connecticut J. Alexopoulos \& J. Clausen

This project is funded in part by the CT DEP through the US EPA Nonpoint Source grant under § 319 of the Clean Water Act

BMP STUDY AREA
JORDAN COVE URBAN WATERSHED PROJECT Waterford, Connecticut
J. Alexopoulos \& J. Clausen
D. Gerwick, Engineering

This project is funded in part by the CT DEP through the US EPA
Nonpoint Source grant under § 319 of the Clean Water Act

Bioretention Design

Partnership for Rain

Gardens

[^0]: * Site is approximately 75\%
 built-out

