Collaborative innovation for economic development in Wisconsin

Research initiatives in value-added processing

Biofuels research Moving from laboratory to industrial scale

The pulp and paper industry produces an estimated two million tons of fiber sludge annually. This material is either discarded in landfills or burned, adding millions of dollars to the cost of paper production. However, this sludge is composed of material that can be converted into sugars, which in turn can then be fermented into biobased chemicals and fuels. These valuedded co-products could earn pulp and paper companies increased sales and profits and, at the same time, reduce the environmental and fiscal burden of waste disposal.

The key is development of cost-effective processes to make these conversions, and that is what WIST is creating. Technologies already developed include a modified pulping process to separate biomass into component fractions, and engineered microbes that convert sugars nto energy-dense chemicals such as isoprene.

soprene can be used to manufacture numerous grades

A biorefinery could convert waste sludge from pulp and paper mills into valuable industrial chemicals, providing new revenue streams and adding jobs.

of fuel, including jet fuel. It doesn't gel at low temperatures like some other biofuels, and that's why the Department of Defense is supporting this project. Isoprene also serves as a platform chemical for production of polymers and other materials. It is a valuable feedstock used in the production of latex, rubber, plastics and pharmaceuticals.

Our goal, with Wausau-based technology company American Science and Technology, is to develop an isoprene production unit that will integrate with a biorefinery that can be adapted to existing pulp and paper mills.

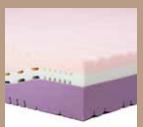
Opportunities in non-food uses of agricultural and forest resources

Many chemicals used in industrial and personal care applications are derived from petroleum sources. Opportunity exists to instead derive these component chemicals from renewable sources, specifically Wisconsin's abundant agricultural and forest resources. Value-added processing of these materials could help grow the state's economy and add jobs. Cranberries, for example, are known to be high in antioxidants. Antioxidants receive a tremendous amount of press because of their putative health and wellness benefits. However, it is not common knowledge that there is a high-value market for industrial antioxidants which are used in applications ranging from cosmetics to lubricants, to plastics and polymers. Industrial antioxidants today from cranberries represents an untapped opportunity with significant revenue potential.

istrate potential uses of biomaterials extracted from agricultural and forest resources. From left, antioxidants are used as stabiliztoes is used in plastic packaging; green cleaning products are a growing market for naturally sourced chemicals; whey from dairy processing can be used to make fire-retardant foam.

Investment in Wisconsin's future

We believe innovation fueled by collaborative research will help unlock opportunities in value-added processing and move Wisconsin forward in creating a biobased economy.


WIST is an entrepreneurial group, and has secured support from federal, state and private sources, which has been critical to our success thus far. We have set out to build strong bridges to industry, to use and promote the expertise of University of Wisconsin-Stevens Point faculty and staff far beyond campus borders, to make a real difference in jobs and quality of life.

are largly derived from petroleum sources. Production of antioxidants Similarly, carbohydrates derived from oats, oils from hazelnuts, and starch from potatoes, all present potential new income sources. Importantly, these materials in many cases can be derived from residual materials, such as potato peels that otherwise must be disposed of, so there is no impact on food supply.

Cranberry harvest.

WIST offices are in the Science Building and the Dan Trainer Natural Resources Building on the UWSP campus. Direct mail to: Wisconsin Institute for Sustainable Technology 800 Reserve Street University of Wisconsin-Stevens Point Stevens Point, WI 54481

For further information, contact: Dr. Paul Fowler Phone: 715-346-3767 Email: Paul.Fowler@uwsp.edu WIST is online at www.uwsp.edu/wist

University of Wisconsin Stevens Point