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1. Introduction 

As with all activities in which students in mathematics classrooms are expected to 

engage, the doing of proof is a fundamentally social practice. Social in the sense that proof is 

constructed in the interaction between and among people (e.g., Ernest, 1994), and also social in 

the sense that the forms and meaning of proof are themselves socio-cultural constructions 

(Hersh, 2008; Wilder, 1989). Much has been written about the historical development of proof, 

especially in Western mathematics, and, indeed, the cultural-historical roots of what constitutes 

rigor, evidence and conviction in the discipline of mathematics point to the deeply social aspects 

of mathematical practice (Hanna, 1989; Hanna, 1995; Lakatos, 1976; Wilder, 1989; see also 

Thurston, 1994, for a compelling analysis of mathematics as a social process from the 

perspective of a mathematician). This paper, however, aims to show how the doing of proof—by 

students in undergraduate classroom contexts—is also a fundamentally social process in which 

the doers are also learners who must confront and make sense of what doing proof in a classroom 

and for teachers means.  

Proving, as a process of discovery and establishment of knowledge, is the defining 

practice of professional mathematics (e.g., Lakatos, 1976; Thurston, 1994). As such, proof holds 

a key—if not the central—position in the undergraduate mathematics curriculum.1  Especially for 

                                                
1 In particular in contrast to K-12 mathematics curricula. Although in recent years, K-12 curricula have 
sought to engage students in mathematical justification and argumentation more centrally, the role of 
formal proof remains minimal and problematic. 
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undergraduate students of mathematics, engagement in processes of proof and justification is 

critical for robust mathematical learning, authentic mathematical participation, and the 

development of meaningful mathematical identity. Students’ experiences with proof in 

undergraduate mathematics are particularly important for students’ sustained interest and study 

in the mathematical sciences. As concerns rise regarding the nature and quality of students’ 

mathematics education, and in particular the declining numbers of students in the mathematical 

sciences at the undergraduate and graduate levels (Daempfle, 2003-2004), research relevant to 

students’ experiences with proof and proving, how students learn to prove, and pedagogical 

approaches to proof—in particular at the high school and undergraduate levels—has increased 

(see Harel & Sowder, 2007, for a recent review). Specifically, recent research in undergraduate 

mathematics education has posited multiple, yet convergent, aspects of students’ understandings 

of proof and proving that impact how students engage in and learn about mathematical proof.   

Much of this research, however, primarily utilizes interview or survey research methods and 

does not situate students’ proving in authentic learning contexts, thereby failing to capture how 

students understand and make sense of proving in the particular social context of the classroom 

(Herbst & Brach, 2005). 

In this paper, drawing upon methods of interaction analysis (Jordon & Henderson, 1995) 

and microethnography (Erickson, 2004) to analyze classroom data from an undergraduate 

calculus discussion section, we focus on how three aspects of students’ understandings of proof 

and proving drawn from this existing literature and refined in our analysis—(1) students’ 

approaches to the production of proof; (2) the epistemic status of different approaches to proof; 

and (3) the expectations that frame students’ production of proof—dynamically shape how 

students make meaning of proof-type problems and construct proof.  This analysis highlights 
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how constructs related to proof and proving that were identified in out-of-classroom research 

contexts emerge and are relevant when students are engaged in classroom mathematical activity 

in which they are held accountable as students and learners. Specifically, we illustrate how these 

students’ proof construction involves the management of tensions arising out of the interplay 

between their expectations regarding the form their proofs should take, how they “see” and make 

sense of the mathematical relationships in the proof statement, and the standards to which their 

work is actually held accountable. We conclude that while students’ beliefs and knowledge about 

proof and argumentation are important for explaining how students’ construct proof—and 

therefore how they can develop increasingly more sophisticated understandings of proving—it is 

through this dynamic and situated interplay that we can gain insight into how school settings 

shape that learning process. 

2. Theoretical Framework 

We begin our exploration from the standpoint that proving is a social process and proofs 

are socio-cultural artifacts (e.g., Balacheff, 1991; Herbst & Brach, 2006; Hersh, 2008; Mariotti, 

2006; see also Lave, 1988, and Saxe, 1990, for more general discussions of the social and 

culturally situated nature of mathematical activity). Thus, our analysis centers on key aspects of 

students’ processes of proof and proving that illuminate not only the ways that students construct 

proof and the meaning of proof, but importantly how these are both related to students’ 

interactions, expectations, and responsibilities within the undergraduate classroom context. 

Drawn from theoretical findings from recent research on proof and proving in undergraduate 

mathematics education research and further clarified in the context of our own data analysis, the 

theoretical framework informing this study proposes three distinct but interrelated aspects of 

students’ constructions and understandings of proof relevant to students’ proof-related activity in 
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classroom contexts: (1) approaches to the production of proof; (2) the status of different 

approaches or forms of proof in terms of intuitive understanding, determining truth, and 

establishing validity; and (3) the expectations that frame students’ production of proof, arising 

from their perceptions of context and ‘audience.’  

2.1 Students’ approaches to proof production  

Recent research has described different approaches to the construction of proof that doers 

of mathematics (e.g., students, mathematicians) employ. Primarily drawing from analysis of 

interview data of students and mathematicians doing and reading proof, these studies focus on 

the inscriptional and conceptual forms of proof that the subjects employ and/or find 

understandable or convincing (Raman, 2003; Weber & Alcock, 2004, in press). These lines of 

research have yielded highly compatible (though not redundant) findings that, generally 

speaking, posit two contrasting forms of proof production, which we call proving as symbolic 

manipulation and proving as sense-making.   

Proving as symbolic manipulation involves the construction of proof by the logical 

manipulation of symbolic statements in order to achieve the statement to be proved. Students 

will begin with a statement (usually a symbolic instantiation of the given information offered as 

a condition of the statement to be proved) and then act upon that statement according to algebraic 

procedural constraints. Raman describes a similar approach with her notion of the procedural 

idea (Raman, 2003). In her interview-based study comparing university mathematics students 

and mathematicians reading and construction of proofs, Raman identifies the procedural idea as 

an approach based on formal logical symbolic manipulations. She characterizes this kind of 

organizing idea for a proof as “top-down” (Raman, 2003, p. 323), meaning that the prover 

possesses an understanding of a procedure for a proof and proceeds from what you’re “supposed 
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to start with”  (interview data in Raman, 2003, p. 323) to what is to be proved in a manner that is 

unconnected to intuitive or informal understandings. 

Similarly, Weber and Alcock (in press; see also 2004) describe what they call syntactic 

proof production:  

First, a student may attempt to construct this proof by working within the representation 
system of proof. That is, the student can choose a proof framework, list his or her 
assumptions, derive new assertions by applying established theorems and rules of 
inference, and continue until the appropriate conclusion is deduced. All this can be 
accomplished without considering configurations in other representation systems, such as 
graphs, informal arguments, or prototypical examples of relevant mathematical concepts. 
We call attempting to prove in this manner syntactic reasoning and proofs successfully 
produced in this way are dubbed syntactic proof productions (Weber & Alcock, in press, 
pp. 8-9). 

Like Raman’s notion, syntactic proof production is based upon formal manipulations and is 

structured according to a known proof framework (or what Raman calls a known procedure). 

Both also emphasize the absence of connections made to informal, intuitive or other 

understandings derived from alternate representations of the mathematical objects and relations.  

 In both lines of research, these approaches to proof production are held in contrast to 

ways of proving that foreground sense-making and understanding. Proving as sense-making 

emphasizes the prover’s intuitive and often informal understanding of the mathematical situation 

as a key resource in making sense of and then also constructing proof. For Raman (2003), the 

heuristic idea captures how informal insights can provide understanding of the situation to be 

proved. These informal understandings may be grounded in empirical data or instantiated in 

different representational systems, but, in the hands of some provers, do not lead to formal proof. 

She contrasts this with the key idea (2004), a heuristic idea that a prover can and does use to 

construct a formal proof. The ‘keyness’ of this idea is that it is an informal understanding that 

captures a key aspect of the mathematical situation in a way that it can be formalized and 

productively deployed in a rigorous proof.  
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The key idea seems to be very similar to aspects of what Weber and Alcock (2004, in 

press) have identified as semantic proof production. While the key idea is a critical conceptual 

insight that allows for the translation from informal to formal proof, the semantic proof 

production is an approach to proof in which the prover uses what Weber and Alcock call 

“instantiations” of relevant mathematical objects to suggest and guide formal inferences.  In 

other words, the semantic proof production could be understood as the process of producing 

formal yet meaningful proof in which the key idea is a resource.  

 Although these characterizations of approaches to proof production provide insight into 

different forms of proof and, in the case of proving as sense-making, the nature of conceptual 

resources that provers employ, these kinds of descriptions do not address how the processes of 

proving that result in these forms and draw upon these conceptual resources are accomplished in 

ongoing talk-in-interaction. In our analyses, we have found that proving as symbolic 

manipulation and proving as sense-making can each be characterized by particular inscriptional 

and linguistic practices. In brief, when students undertake proving as symbolic manipulation, 

their talk consists largely of descriptions of states of mathematical relationships and animations 

of actions on mathematical objects; in addition, speakers and participants (or the generalized 

‘you’) are limited to positions as animators within conditionals hypothesizing prospective actions 

or directives for taking particular actions. In contrast, in moments of proving as sense-making, 

the participants are more often positioned as agents in processes of framing ongoing activity, and 

speakers animate complex coordinations of linguistic, gestural and inscriptional activity.2 

                                                
2 See Ryu & Hall (2001) for an analysis of shifting participation frameworks in proof construction as 
shifts in linguistic and representational activity. 
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2.2. The epistemic status of approaches to proof 

The broad literature that addresses the epistemic status of mathematical proof ranges 

from historical and philosophical analyses to empirical studies of epistemological beliefs about 

mathematics and mathematical practices. We have focused our analysis of this literature on those 

empirical studies that address how provers come to see or establish the truth of a mathematical 

statement including, in particular, how different kinds of proof can provide different senses of 

knowing in the prover (Fischbein, 1982; Healy & Hoyles, 2000; Raman, 2003; Recio & Godino, 

2000; Weber & Alcock, 2004). In this body of work, several terms are used to describe the 

various kinds of knowing that a proof can produce, e.g., convincing, explanatory, ascertaining, 

providing conviction, providing understanding. As several of these authors point out, a primary 

distinction made in this research is between proofs that are explanatory versus proofs that that 

are convincing. Although the intended meanings of these terms are not always clear, it appears 

that most researchers think that proofs that explain provide an intuitive, sometimes informal, 

argument that makes clear why the statement is true, while proofs that convince establish the 

mathematical veracity and validity of the statement, usually in a formal manner—in other words, 

they establish that the statement is true. 

Raman (2003) contrasts proofs that provide “a sense of understanding” with those that 

may result in “conviction”, though sometimes without the attendant understanding that makes 

the truth of the statement meaningful (pp. 322-323). Similarly, for Weber and Alcock (2004) 

proof productions can be “explanatory” and/or “convincing.” The primary distinction seems to 

lie in the meaning that the approach makes available—procedural and syntactic approaches can 

be logically correct, and thus convince the reader of the truth of a statement, but meaningless in 

terms of the mathematical objects and relationships under consideration. 
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In our own data, it seems clear that students can be convinced (in the dictionary sense of 

the term rather than the formal mathematical sense) of the truth of a mathematical statement in 

the absence of formal proof. This sense of conviction is perhaps closer to what Fischbein (1982) 

has called internal intuitive conviction, a person’s internal knowledge of the truth of the 

statement grounded in intuitive conceptual understandings. He contrasts this kind of conviction 

with external extrinsic conviction, derived from formal argument and, importantly, a source of 

conviction external to the intuitions of the prover. Fischbein’s distinction between internal-

intuitive and external-extrinsic, as well as our own data analysis, suggests a distinction between 

what is convincing for oneself and what is convincing for others or for other purposes. Indeed, as 

Recio and Godino (2001), Balacheff (1991), and others have argued, ways of knowing a 

mathematical truth through proof are situated in institutional and social contexts and cannot be 

understood independent of why and for whom such arguments are produced. 

2.3. Students’ orientations to the expectations that frame their proving 

This is particularly true of students in the contexts of schooling. For example, students 

often base their success on a mathematical task on their perception of the teacher’s expectation 

for that task—how the task is completed, what the completed work looks like, etc. And thus, 

students may often consciously or not tailor their work to the perceived expectations of their 

teacher. Students’ proof production and work is responsive to their understandings and 

perceptions of the audience they are doing mathematics for and this audience’s expectations. 

Several researchers have described the contrasting set of expectations that students seem to 

attend to in the production and evaluation of proof. 

Healy & Hoyles (2000) work highlights how students differently conceptualize proof 

when asked which arguments they might adopt versus what they expect their teachers would 
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grade most favorably. In particular, they found that students preferred, for themselves, arguments 

that they could evaluate and that they found convincing and explanatory, while they believed that 

their teachers would mark symbolic or algebraic arguments most highly. 

Raman’s (2003) discussion of private versus public argument correlates directly with the 

distinction previously made between providing understanding and rigorously establishing 

veracity. Private arguments engender a personal sense of understanding while public arguments 

are produced “with sufficient rigor for a particular mathematical community” (p. 320). Her 

contrasting interviews with university mathematicians and students demonstrate how while both 

groups perceived that arguments for these audiences are different, for mathematicians private 

and public arguments are closely linked while for students there is a disconnect between their 

private understandings and their expectations of formal public proof. 

In another analysis in this larger project (Edwards, Farlow, Liang & Hall, 2008), we 

examine how students orient differently to different audiences, particularly production for 

oneself versus production for a public but local group versus production for a perceived, often 

imagined, authority. This analysis examines how, in terms of linguistic and representational 

activity, the ongoing construction of a group’s work is interactionally designed for different 

recipient positions—in other words, how, when the audience shifts, the nature of the students’ 

constructions, as achieved in talk-in-interaction, also shift.  

3. Data and Methods 

The study was conducted in an introductory calculus course where discussion sections 

were organized as “workshops” (Treisman & Fullilove, 1990) in which instructors were expected 

to actively support student interaction and to emphasize the need for mathematical explanation 

and justification. A significant portion of each section was spent with students solving problems 
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in small groups while the instructor moved between the groups asking for explanations and 

answering questions. Data were collected several weeks into the fall semester, after the student 

groups had settled and the format of the sections was routine. After several observations early in 

the semester we, together with the instructor, selected one group of students and several 

problems for videotaping and close analysis. The participants include the instructor (TK) and a 

group of three non-math major freshman undergraduate students—two female (Ariel and Amy) 

and one male (Josh). At the time of the study, TK was a first year graduate student in the math 

department, and is not a native English speaker. We chose problems that explicitly required 

proof or justification and that contrasted analytic/geometric content in their design.  As our data 

collection was conducted over several weeks, the problems covered topics including limits, 

derivatives, and the Fundamental Theorem of Calculus. Data consist of audio/video recordings of 

local and public talk during the small group segments of the sections, fieldnotes of classroom 

observations, and post-observation video-elicited interviews conducted separately with the group 

of students and the instructor. Selected episodes of local and public talk from the corpus were 

reviewed and served as the basis for a set of semi-structured questions for the interviews. 

Our study uses close interaction analysis of the audio-video records of the focus group 

(Jordan & Henderson, 1995), supported by a parallel analysis of the interview data.  Audio-video 

records were content-logged and initial strips of interaction were selected for closer analysis. 

Using these, we developed grounded theoretical categories in an iterative fashion, then extending 

our analysis systematically across the data corpus (Glaser & Strauss, 1967). The iterative 

development of categories also included reviews of findings from the literature relating to 

students’ beliefs and knowledge of proof and proving, thus the category scheme that frames our 

findings synthesizes current research findings as well as constructs grounded in our data corpus.  
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Our analysis of the data corpus utilizing this category scheme revealed themes across the 

corpus and subsequent sequential analysis of the episodes revealed how those themes were 

manifest (emerged and co-related) in students’ ongoing problem-solving activity. We found that 

we could describe the emergence and relation between the themes as tensions in which the 

students engaged, and then analyzed the secondary interview data for confirming and 

disconfirming evidence of the students’ feelings of tension around these issues.  

4. Findings: Tensions in understanding and constructing proof 

In our analysis, three central tensions emerge related to approaches to proof, the 

epistemic status of proof, and students’ expectations due to audience: (1) the tension between 

“doing mathematics” in terms of symbolic machinery in order to achieve proof and making sense 

of the mathematical situation in order to understand the argument; (2) the tension between the 

adequacy and utility of symbolic and geometric approaches to proving; and (3) the tension 

between being personally convinced through intuitive understanding and producing a 

demonstration of proof that is perceived as adequate for convincing others.  These tensions 

emerged across the data corpus, though to differing degrees and with different entailments. In 

what follows, we illustrate the tensions as they became salient in the students’ work on a single 

problem, drawing from both our interactional/sequential analysis of the episode as well as the 

supporting evidence from the video-elicited interviews with the subjects. 

4.1. Introduction to focal episode 

In the focal episode, the three students, collectively referred to as JAA (Josh, Ariel and 

Amy), work on the following problem together at a chalkboard:  

Given a quadratic polynomial 

€ 

f (x) = ax 2 + bx + c , where a, b, and c are real numbers, 

suppose that f has two real roots, r and s. Show that 

€ 

f '(r) + f '(s) = 0.  
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This problem was assigned from a worksheet titled Monotonicity and Concavity, part of the 

larger unit on applications of the derivative. The course had covered definition of the derivative a 

few weeks earlier and had begun work on applications of the derivative two sessions earlier. 

Immediately prior to this episode, the students had completed and discussed with the TA their 

work on two related problems applying the derivative to quadratic functions (see Appendix A). 

4.2. Tension between “doing” mathematics and “seeing” its meaning 

As JAA begin their work on the problem, there is first tension between and then 

coordination of the symbolic mechanics of what the students call “doing mathematics” and 

“seeing the meaning” of the symbols in visual space. The tension manifests as the students move 

back and forth between their perceived need to manipulate symbols to arrive at a statement 

equivalent to f’(r)+f’(s)=0 and their desire to understand what the symbols refer to graphically 

and conceptually and how they relate to one another. Their first attempts at the problem focused 

on identifying symbolic relationships that they think could potentially be used to derive the proof 

statement (f’(r)+f’(s)=0). For example, they begin with Ariel’s suggestion that f’(r) = 0 (which 

Josh immediately points out is not possible since “r is a root, its not a maximum or a minimum 

necessarily”), followed by another suggestion from Ariel that they begin with f(r) = 0 and then 

“plug r into the equation and set it equal to zero? (2) I know don’t know is that gonna do 

anything?”  Ariel’s question points to a critical orientation of their problem-solving at this 

stage—they are perceiving the work of proving this statement to involve symbolic manipulations 

that “do” something, presumably something that yields another symbolic statement closer to the 

desired end state.  This orientation—usually initiated by Ariel and Amy—returns several times 

as they make unsuccessful attempts to make headway on the problem by offering various 
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algebraic transformations of the proof statement as well as manipulations of the expressions for 

f’(r) and f’(s).  

However, Josh seems to want to explore what the symbols represent, and his push for 

“seeing” the meaning of the symbols comes into tension with Ariel and Amy’s push for symbolic 

manipulation.  In the excerpt below, one of the early attempts to find a productive symbolic 

approach, although Josh begins by trying to algebraically transforming the proof statement by 

substitution, he eventually redirects the group to consider what the symbols “represent:”3 

Josh: … well let's see (.) f prime of r equals two a r plus b right? [writes f’(r)=2ar+b]  
and f prime of s equals two a s plus b.  [writes f’(s)=2as+b]  well so all we have to 
prove I guess (3) is that these two [points to the expressions 2ar+b and 2as+b] 
are equal to each other?  that would mean that r equals s=  

Ariel: =no (.) that would mean that r is equal to negative s.  No because  
Josh: what does it what does it say exactly that we have to prove?  
Ariel: (3) one is equal to the negative of   
Josh: these that these [looking with Amy at the worksheet and pointing to the problem] 

added together=  
Amy: =have to equal zero  
Josh: equal zero (8)  well what do these represent?   
Ariel: those represent (2) those represent pretty much nothing important  
 

At the start of this excerpt, although the algebraic manipulations are incorrect, it seems that Josh 

and Ariel are attempting to algebraically transform the proof statement in order to derive a 

simpler relationship—i.e., what “that would mean.”  When this approach is unproductive, Josh 

then literally and figuratively steps back and attempts to use the algebraic expressions for f’(r) 

and f’(s) to rearticulate what “we have to prove”.  He questioningly suggests “that these two are 

equal to each other?” which he says would mean that r equals s (since the two expressions are 

identical but for the substitutions of r and s).  Ariel corrects him, saying that it actually would be 

that r equals negative s (since the original statement is that f’(r) + f’(s) = 0, and hence f’(r) = -

f’(s)).  However, she immediately corrects herself, perhaps realizing that just because f’(r) = -

                                                
3 See Appendix B for list of transcription conventions. 
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f’(s), r doesn’t necessarily equal –s.  The focus of their responses on the symbolic representation 

indicates that they are still approaching the problem as symbol manipulation, indeed, that making 

meaning involves following the entailments of symbolic manipulation.  

However, after a significant pause during which he is looking at the worksheet and Amy 

and Ariel are looking at the board, Josh asks “well what do these represent?,” making a bid to 

shift their attention from the symbolic forms to their geometric representations.  Josh consistently 

attempts to see the mathematical relationships in geometric terms across the data corpus. In other 

episodes, he suggests that the group “imagine” the mathematical objects in space, and draws and 

gestures geometric representations of symbolic expressions as a means of “seeing what they 

mean.”  As such, it appears that when asking “what do these represent?” Josh is referring to the 

geometric meaning of the expressions—which he later points out is the slope of the tangent at the 

roots.  At least for Josh, making sense of the proof statement—and hence coming to understand 

what it is asking them to do—involves “seeing” mathematical relationships in geometric terms.   

In this particular instance, however, Josh’s bid to consider what the symbols represent is 

unsuccessful and JAA continue attempting to deal with the proof statement as action on symbols.   

Specifically, Ariel rejected Josh’s bid and the group returns to syntactic reasoning: 

Amy: [can we]   [can you plug in like]  
Ariel:  [so if] we [plug them] in and set it equal to zero 
Josh:   plug them in?  Where do we plug them in? 
Ariel:  to our quadratic formula  
Amy: can you do like, plug in  
Josh:   oh I see and solve for r, solve for these different things? Is that what you mean  

 

This excerpt illustrates what we identified as the push-pull between “doing the actual 

mathematics of it” or the students’ work of symbolic manipulation and “making sense” or 

developing understanding like Josh proposed to the group. In fact, this push-pull relationship is 

further evidenced in student interviews. For instance, Josh states: 
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Josh:   It just strikes me, I don't know if this is what actually happened, I don't remember 
but it's interesting to me that there's sort of this first moment of revelation like of 
understanding of how it should be conceptually, but it was very clear for us that 
wasn't enough.  We had to go on and write it down and figure out how it related 
back so= 

Ann:   Related back to? 
Josh:   =to what's on the board 

 
On the one hand, Josh talks about “this first moment of revelation” when students experience 

understanding of the mathematical concepts, and, on the other hand, Josh talks about having to 

“go on and write it down” or the symbolic manipulation of doing the mathematics.  Ariel points 

out a similar tension: 

Ariel:   Yeah it's kind of like you are struggling and think of what does this all relate, what 
do, like where do you go, you might know the answer, but you don't necessarily 
know like how you can use calculus to show it.  There was the pause where 
everyone thinks and then you just it clicks, and then you have to like deal with 
writing it out and doing the actual mathematics of it.  But at some point, it clicks 
and you are like, ok this is where we go. 

 
Here Ariel states that she “might know the answer” or understand (i.e., “it clicks”), but for Ariel 

this is contrasted with the need these students feel to do “the actual mathematics of it.”  

4.3. Tension between the adequacy and utility of geometric versus symbolic argument 

Alongside the tension between sense-making and symbolic manipulation, the students’ 

actions also reveal a tension between the adequacy and utility of geometric versus symbolic 

argument. In particular, across the data corpus the students struggle to figure out what kinds of 

arguments will be seen as adequate, and while they often draw upon geometric intuitions and 

arguments to convince themselves, they indicate that symbolic argument is what is valued.  

As the focal episode continues, the initial push-pull between symbolic manipulation and 

sense-making continues as further suggestions for symbolic substitutions are made (by all the 

students) and Josh occasionally re-attempts to link the symbolic forms to what they represent. 

This back-and-forth eventually leads to a coordination of symbolic elements that they have 

inscribed on the board (e.g., f(r), f(s), f’(r), f’(s), -b/2a), their geometric representations in 
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inscriptional and gestural space, and their technical names (e.g., roots, derivatives, tangents, 

etc.). In the excerpt that follows, Josh attempts to recast what the problem is asking them to 

prove in terms he understands, and eventually makes the connection between the roots of the 

quadratic and the slopes of the tangent lines at the roots in geometric space: 

Josh: these are the roots (.) I mean the idea is to get the- is to find the connection 
between the roots:: and derivatives right?  So if we show that- if this is:: if f of 
this:: [points to –b/2a written on the board, which they had previously identified as 
the x-coordinate of the critical point] is negative then you'll have (.) in other words 
we know that this is true (.) maybe that’s what we need to do.  We know we have 
two roots (.)  so in that case negative b over two a is less- f of negative b over 
two a is less than zero. (3) right?  

Ariel: why would it=  
Josh: =its only its only if a is concave up  
Ariel: well well what were gonna end up proving is that two a r plus b plus two a s plus 

b all over two is equal to negative:: (.) no never mind  
Josh: but if we what were what were actually showing is that at the two roots [uses 

index fingers to point to two points in space] we have exactly opposite graphs 
opp opposite slopes (.) which makes sense (.) right? Because its they're they're 
perfectly symmetrical.  That's what we wanna show (.) is that they're exactly 
opposite each other.  [gesturing opposite “slopes” with open hands—Figure 1] 

 

 
 

Figure 1.  Josh demonstrating opposite slopes of 
tangents at roots. 

Figure 2. Rendering of Josh’s drawing of parabola 
with two real roots and tangent lines at roots. 

 

This excerpt begins as Josh calls attention to the roots, r and s, and suggests that “the 

idea” of the proof is to “find the connection with the roots:: and derivatives right?” This move 

signals a significant shift from the group’s previous approach; rather than manipulating symbolic 

expressions he is proposing that they consider the conceptual connections between the two of the 
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key mathematical ideas in the problem, roots and derivative. This reframes the problem now as 

one in which symbolic expressions are used to represent images of mathematical objects and 

conceptual relationships, rather than simply arising as logical entailments of algebraic 

procedures. As such, Josh continues by describing, in verbal symbolic terms, a parabola that has 

two roots because it’s critical point is less than zero (“We know we have two roots (.) so in that 

case negative b over two a is less- f of negative b over two a is less than zero. (3) right?”). Ariel 

also attempts to recast the proof statement, but in purely symbolic terms by substituting the 

appropriate expressions for the value of the derivative of f at r and s into the proof statement4; 

however, she quickly realizes that her suggestion is problematic and rejects it. Josh then offers 

what we have identified as the key geometric argument in the group’s work: Because the graph 

of the quadratic function f is “perfectly symmetrical”, the slopes of the tangent lines at the two 

roots are “exactly opposite each other.” He accompanies and coordinates his verbal argument 

with gestural instantiations of roots (pointing at two points at the same vertical displacement in 

gestural space) and slopes at those roots (using his open hands to indicate the angles of opposite 

slopes at the imagined points in gestural space—Figure 1). After a significant 11-second pause, 

Josh then moves to the board and slowly and deliberately draws a graphical rendering of his 

argument (Figure 2)5: 

Josh: (11) If they're opposite each other [drawing a parabola]  
(7) so that [drawing tangent at left root]  
(4) and that [drawing tangent at right root] 

 (38) [All looking at drawing and looking away] 
 
                                                
4This substitution was, according to the TA, one of the expected approaches to the proof, and several 
other groups in the section did complete the proof this way. Ariel’s attempt is incorrect, however, as she 
seems to confuse the substitution into the proof statement with a previous attempt using substitution. In 
any case, her symbolic substitution attempt is not taken up by her groupmates. 
5 The particularity of Josh’s drawing—a parabola whose line of symmetry is the y-axis and that is 
concave up—raises interesting issues about deriving generality of argument from particular inscribed 
geometric cases. See Brown, 1997, for a related discussion of generalization and pictures as proofs. 
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Thus, the push-pull process between sense-making using geometric representation and 

“doing mathematics” as symbolic manipulation culminates in Josh’s production of an argument, 

performed in a complicated coordination of verbal, gestural and inscriptional action, that 

demonstrates that the slopes of the tangents at the two roots of a concave up parabola (with 

vertex below the x-axis) are opposite. However, he frames this argument not as a “proof” that 

concludes their work on the problem, but as a clarification of “what we’re actually showing”, a 

recasting of what the problem is asking them to prove in ways that “make sense” to them.  

Indeed the group’s orientation away from geometric argument as an adequate production and 

toward symbolic forms is dramatically evidence in what follows the production of the drawing.  

After Josh’s demonstration of his geometric argument, the group stands looking at the drawing 

and looking away in silence for 38 seconds. Although it is impossible to determine with certainty 

what they were thinking during this period of silence, it is very clear that they are not acting as if 

they are done with the proof. Work is left to be done, and although they realize that Josh has 

provided a geometric argument, the students seem to perceive a lingering need for a symbolic 

argument. When asked about this period of silence in interview, Josh and Ariel explain: 

Josh:  Like after those 35 seconds, there's a big loss of hope.  Whenever I'm thinking 
about something there's also the idea that while I'm thinking the other people are 
also thinking that might give us the right direction.  As it keeps going and going 
and going and nobody says anything and nobody has any ideas and we're just 
kinda plugging and plugging and plugging, I start to get this feeling like oh well 
where is he?  He'll get here soon, the answer will be here soon. 

Ariel:  Especially when you understand the concept.  For me, I know what I'm trying to 
do, I know it's just algebra, where's the TA. 

 
Here it is clear that the students “understand the concept” and are satisfied that Josh’s geometric 

argument provided understanding, but they are aware that they still need to do the “algebra” or 

produce a symbolic argument. So in fact we see that while geometric argument is useful (to 

them) for understanding the problem, it is inadequate for doing proofs in this context. And while 
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symbolic argument is what counts, it is “notational nonsense,” as Josh calls it in the context of 

another problem, or “just algebra” that just needs to get done. 

4.4. Tension between convincing oneself versus producing proof for others 

The 38 seconds of silence mark the transition from the group’s making sense of “what 

we’re really showing” and what they orient to as the actual work of proof production. The group 

then begins a series of attempts at producing chains of symbolic statements ending with the proof 

statement. As in their earlier attempts, they fail to make productive manipulations, and this time 

no connections to the underlying ideas of the symbols are explored. The emphasis of their work 

is instead on identifying logically appropriate symbolic substitutions and following the logical 

entailments of particular features of symbolic statements (e.g., if there is ‘+c’ on both sides, they 

cancel out; if multiple terms contain the same symbol, it should be factored out; etc.). The 

understanding drawn from Josh’s geometrically-based demonstration is not taken up as a “guide” 

for making formal logical inferences nor served as a “key idea” in the development of their 

formal deductive argument (Raman, 2003; Weber & Alcock, 2004).6  

At this point TK—the instructor—comes over to the group and asks them to explain their 

work. In particular, he has noticed Josh’s drawing (Figure 2) and, as he explains in interview, 

and he is probing for their understanding of the key insight—symmetry—that the figure shows. 

The group presents Josh’s geometric argument, explaining that they all understood it, to which 

TK tells the group that this argument is acceptable and to move on to the next problem. In 

surprise, the students question TK:  

Ariel: but is that all you want us to do?  
Josh:  but what kind of steps do you want us do you want us to prove it I mean  

                                                
6 As several colleagues have pointed out, the key geometric insight in this particular problem is non-trivial 
to transform into a formal symbolic proof. That these students do not successfully accomplish this should 
not be surprising; perhaps more noteworthy is that they do not attempt to do so. 
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TK: uhh  
Josh:  theoretically we could prove the whole thing //geometrically]  
TK: //yeah] you could.  So uh I’m more satisfied if you if you just see it (.) right I 

mean (??) The most important steps would be that the that this parabola is (.) 
Josh:  symmetrical  
TK: symmetric symmetrical  
Josh:  but I saw that even in my drawing 

 
This illustrates the tension that arose for students between what they found convincing for 

themselves and the expectations they perceive that frame what they think it takes to convince 

others. Indeed, these students found Josh’s geometric argument personally convincing, but they 

did not think that this argument counted as something that was convincing for others. In a later 

interview Ariel reveals that this tension caused feelings of frustration for her: 

Ariel:   It's frustrating.  I always think in terms of the test, I like there to be a standard, 
this is the norm this is how far you have to take it.  I would prefer it to be how it 
was where you just understand the concept and that's fine, but I know that 
sometimes that's not what they want, they want more, but they're not that specific 
about it.  So it's just frustrating, how far do you want me to go?  Do want me to 
understand it, or do you want me to be able to prove to anyone who hasn't a clue 
about any of this? 

 
On the one hand Ariel wants to know if she expected to do what is convincing for her personally 

or if she is expected to produce arguments that are convincing for “anyone who hasn’t a clue 

about any of this.”  

5. The duality of learner vs. student: Tensions in learning to prove 

As we look across the tensions discussed above we see that students manage two roles—

their role as students and their role as learners. As students, they perceive an expectation in the 

classroom to convince others using a syntactic approach to proof production. And as learners, 

they have personal desires for understanding and personal conviction arrived at using geometric 

argumentation. Furthermore, we see in this analysis that these tensions manifest through 

students’ feeling of frustration and uncertainty. 
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This raises issues regarding how students orient to the production of proof; in this 

classroom context, as is likely the case for many traditional school contexts, proof is not to be 

produced for the purpose of convincing oneself, it is produced in order to convince others. But to 

convince others of what? It is clear from Ariel’s statement about her frustration that her concern 

is not about what it takes to be convincing to others (whoever they are), but about how to 

convince those in authority (the TA, the people who grade her test) that she can produce 

adequate proof. Adequacy, however, is not something she can come to understand or make sense 

of, it is a social standard or norm that she is held to and to which she must become acculturated. 

Thus, for Ariel and her groupmates, and likely many undergraduate calculus students, learning to 

prove is not a matter of learning how to convince, but of divining the standards and norms of 

rigor that their instructors expect but often leave unarticulated.7 

6. Conclusions/Implications  

This study, situated in an authentic Calculus classroom context and focused on the 

dynamics of processes of proving as they unfold, provides practical contributions to the teaching 

and learning of mathematical justification and proof and theoretical contributions to existing 

research on students’ conceptions of and approaches to proof.  Clearly, there are implications in 

this work for Calculus instructors, teaching assistants, and/or course developers whose 

responsibilities are based around students’ successful learning. An understanding of the possible 

tensions that students manage while developing proofs may help to inform teachers of the nature 

of the challenges and choices that students face. For example, an awareness of the multiple 

                                                
7 Others have also noted the lack of authenticity of the vast majority of proof-related mathematical 
activities in classrooms; in contrast to the purposes of proving in the disciplinary practices of professional 
mathematics, students in most learning contexts prove something that is already known (why else would 
they be asked to prove it) as a vehicle for engaging in particular content (e.g., derivative) and/or explicitly 
exercising proof production (e.g., in a transitions to advanced mathematics undergraduate course). They 
are not engaging in mathematical discovery or establishment of truth or validity.  
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audiences that JAA had in mind while trying to produce a proof may have prepared TK for the 

students’ reactions of uncertainty when he accepted their geometric proof. Furthermore, with 

such an awareness, he could have taken advantage of the opportunity for explicit discussion of 

the function and purposes of proof for students. More broadly, these tensions raise the issue of 

the sometimes contradictory messages about proof that undergraduate students (and presumably 

others) receive with regard to making sense of and producing convincing and rigorous 

arguments.  It should be considered whether they reflect larger tensions in the mathematics 

educational community about argument versus proof, understanding versus production, and the 

relative values different representational demonstrations of mathematical argument that are 

themselves reflected in the wider arenas of mathematical practice and the history and philosophy 

of mathematics. 

Theoretically, our discussion of tensions within a Calculus classroom focused on proof is 

a contribution to the current theoretical understanding of students’ group work on proof-based 

problems. Situating this study in an authentic classroom context highlights how students’ frame 

their work by the understandings of the norms and expectations to which the are held 

accountable, and reveals the specific representations and forms of argument they employ as they 

attempt to meet those norms and standards. This analysis also sheds light on how the 

inauthenticity of students’ proof activity in undergraduate calculus courses not only shapes how 

they produce proof, but also calls into question what about doing proof is being learned in those 

situations. Research must acknowledge the fundamentally social nature of mathematical activity, 

and of proof in particular, and, thereby, in the context of examining students’ learning to prove, 

pay closer attention to how students are attending to and being socialized into proving practices 

(especially those practices that are at odds with what mathematicians and math educators 
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consider authentic and productive). Finally, from a broader perspective, as our findings 

underscore the relationships between aspects of students’ understandings and beliefs about 

proving as they emerge in interaction situated in particular contexts, they provide a window onto 

the interaction between cognition and social context. 
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Appendices 

Appendix A: Focal problem 

In the focal episode, the students were working on Problem 1c below. They had just completed 
Problems 1a and 1b. 

1. a. Show that a quadratic polynomial f(x)=ax2 + bx + c, where a, b, and c are real 
numbers, always has one critical point and no points of inflection. When is f concave up? 
When is f concave down? 
b. How can you tell if a quadratic polynomial has two roots? One root? No roots? 
c. Suppose that f has two real roots, r and s. Show that f’(r) + f’(s) = 0.  

 

Appendix B: Transcription Conventions 

, (.) short pause 

(#) pause for # seconds 

. falling tone 

? rising tone 

:: extended syllable 

- self-interrupt 

= latching; no pause between utterances 

underline  emphasis/stress 

// ] overlapping talk 

[  ] overlapping talk and gesture 

(??) not intelligible 

(  ) text in parentheses is unclear 

((LF)) laughing 

{italics}    gestures 

 


