From Monitoring to Assessment to Management: Using Science to Help Us Manage Lake Ecosystems

Tim Asplund, WDNR Lake Leaders, September 2010

Lake Monitoring, Assessment, and Management - Overview

- Lake Monitoring water, plants, fish, AIS
 - Role of CLMN, grants,
- Statewide Lake Assessment
 - WisCALM
 - Nutrient Criteria
- Goal setting and planning at lake scale
 how we use data to drive decision-making
- Management Tools Protect, Manage, Restore
- Case histories or examples (Lake Tomah)

How's my lake doing?

- Water Quality
 - Water clarity
 - Trophic status
- Ecological Integrity
 - Fish and Aquatic Life
 - Plants
 - Invasives
- Recreation
 - Boating
 - Swimming
 - Fishing
- Public Health
 - Blue-green algae
 - Bacteria

Wisconsin's Lake Monitoring

- Citizen Lake Monitoring Network (Self-Help)
- WDNR Baseline/Long Term Trend Monitoring
- Satellite (Lakesat.org)
- Other (grants, research, special studies)

Water Quality Monitoring

- Secchi disk transparency
- In situ profiles (DO, temp, pH, conductivity)
- Chl a and Total P
- Water Chemistry (other nutrients, anions, cations, ANC, DOC)
- Color and turbidity

http://dnr.wi.gov/lakes/CLMN/reportsanddata

🗧 Lake Water Quality 2010 Annual Report - Windows Internet Explorer provided by Wisconsin DNR													
🚱 🕞 🕶 🔊 http://prodoasjava.dnr.wi.gov/swims/public/reporting.do?type=10&action=post&stationNo=443146&year1=2010&format=html													
File Edit View Favorites Tools Help													
🚖 🏟 🌈 Lake Water Quality 2010 Annual Report 🎒 🔹 🔂 👻 🖶 Page 🗸 🍥 T										ige 🕶 🎯 Tools 👻 🎇			
Lake Water Quality 2010 Annual Report													
Tomahawk Lake Oneida County Waterbody Number: 1542700					Lake Type: DRAINAGE DNR Region: NO GEO Region:NE								
						Site Na	me					Storet #	
Tomahawk Lake - Deep Hole 443146													
Date	SD (ft)	SD (m)	Hit Bottom	CHL	TP	TSI (SD)	TSI (CHL)	TSI (TP)	Lake Level	Clarity	Color	Perception	
06/03/2010 07/03/2010 07/08/2010 08/04/2010 08/04/2010	23.9 20 20 20 16.5	7.3 6.1 6.1 6.1 5	NO NO NO NO	.48 1.7 1.95	12 11 12	31 34 34 34 37	29 39 40	47 47 47	NORMAL		BLUE	1-Beautiful, could not be nicer	E
07/03/2010 08/04/2010 Depth Temp. D.O.													
FEETDEGREES F171.6175													
Date Collector Comments													
07/03/2010 Beau				autiful daysunny and 80's									
													*
Done												Second intranet	🔍 100% 🔻 💡
🏄 start 🔰 🖉	0 6	🟉 Lake '	Water Quality 2	🕒 Inbo	ox - Micro	osoft Out	Micros	oft PowerPo	pint 👌 status	Connected		2 💀 🚣 🔿 🕻	🖸 🖉 🎾 🍖 11:04 PM

Done

Long Term Water Quality Trends – Lake Minocqua, Oneida Co.

Assisted by hundreds of volunteers, University of Wisconsin-Madison researchers assess water quality of Wisconsin's lakes from space (map: 1999-2001).

Protocol available at: http://wiatri.net/ecoatlas/ReportFiles/Reports2/1757AquaticPlantReport.pdf http://www.uwsp.edu/cnr/uwexlakes/ecology/APM/Appendix-B.pdf

Data Collection

- Point-intercept method (Hauxwell et al., 2010)
- Species list and distributions for each lake
- Density rating for each species (1,2,3)

Fullness Rating	Coverage	Description
1	HHHHHH	Only few plants. There are not enough plants to entirely cover the length of the rake head in a single layer.
2	MARKAPANON	There are enough plants to cover the length of the rake head in a single layer, but not enough to fully cover the tines.
3	AND AND	The rake is completely covered and tines are not visible.

In-lake examples: Summary statistics

Enterprise Lake, Langlade County Size - 200 ha; Max depth - 8.2 m

Summary Statistics				
Total lake points	563			
Number of points with plants	178			
Maximum depth of plants (m)	4.1			
Littoral area (% of lake)	32			
Mean # species/point	1.7			
Species Richness	27			
Simpson's Diversity Index	0.87			

Species	Frequency of occurrence (%)	Species	Frequency of occurrence (%)
E. canadensis	48.1	M. tenellum	1.9
<i>Nitella</i> spp.	26.4	<i>Chara</i> spp.	1.9
V. americana	14.3	Isoetes spp.	1.9
C. demersum	12.0	P. amplifolius	1.6
N. flexilus	11.6	M. beckii	1.6
P. pusillus	11.2	E. acicularis	1.2
N. gracillima	8.1	N. odorata	1.2
P. richardsonii	4.7	P. strictifolius	1.2
S. fluctuans	4.7	E. palustris	0.8
P. robbinsii	3.9	M. heterophyllum	0.8
U. purpurea	3.9	N. variegata	0.4
M. spicatum	3.5	P. crispus	0.4
P. spirillus	3.1		
B. schreberi	2.3		

In-lake examples: 2) Maps of species distributions

390 + 422 *391 *423 *45 • 117 353 • 392 • 121 • · 393 · 425 100 * 118 * 136 * 153 • 119 • 137 • 154 • 172 .391 .126 . 395 * 427 * 45T *173 *191 *288 *313 *338 *361 *396 *128 39 • 41 ·188 ·505 ·5 489 *506 190 .307 *530 *536 •555 •558 *538 *513 *518 *551 *551 *557 *560 *56 ·189 ·207 *533 *510 *5L 524 • 529 • 535 • 542 382 * 111 * 116 * 175 * 197 *51 117 * 176 *198 *5 ·285 •308 •333 •358 177 *199 • 286 • 309 179 *501 ·287 •311 •336 •361 •387 •419 •451 •480 •502 *312 *337 *362 *388 *420 *452 *481 *503 Enterprise Lake, Langlade Cty. 389 421 453 182

Distribution of Eurasian Watermilfoil

Species of Special Concern

Aquatic Invasive Species Monitoring

"Smart Prevention" approach to AIS monitoring

- Is there a vector for introduction to a waterbody?
- Can the species become established in the waterbody?
- Is there a likelihood of secondary spread from the waterbody?
- Is there potential for impacts to native species or habitat?

Does the lake have public access?

Do species have physiological requirements?

Spiny Waterflea Monitoring

M. Sallstrom, E. Stone, K. Lund, N. Braun, 2009

Vulnerability Thresholds

- Boat landing access
- Min area = 123 acres
- Min $Z_{max} = 25$ feet
- Min Secchi = 8 feet

Future Directions

- Surveillance/Early Detection Monitoring
- "Casual" and trained observers broad coverage
- Targeted AIS Monitoring
- Tracking the regional extent of a species
- <u>Strategic AIS Monitoring</u> (Tier 1)
- Randomized monitoring are we slowing the spread?
- Strategic AIS Monitoring (Tier 2, 3)
- Case specific response monitoring, containment and control for restricted/prohibited species.

USGS Lake Level Network

- Establish a lake-level monitoring network to evaluate trends in various regions of the state.
 - Emphasis will be on relatively natural seepage lakes, which are most responsive and can give indications of climatic/hydrologic change following a regional pattern.
- Establish baseline conditions for environmental studies and comparison with short-term results.
- Increase the understanding of different lake hydrologic systems and how they affect lake water levels.
- Build a framework for broader lake level monitoring through CLMN

Lake Assessment

- How are Wisconsin lakes doing?
 WisCALM
- Approaches
 - Comparative lake class, ecoregion, reference lakes/conditions
 - Standards/thresholds P criteria
 - Historical Trends and Paleolimnology
- National Lake Assessment

Designate use

Categorize lakes Establish reference conditions

Use TSI data to assess condition of lake (Excellent, Good, Fair, Poor)

Process Flow Diagram – Fish & Aquatic Life Uses

Wisconsin Lake Classification

Statewide examples (plants): 1) How does species richness vary across lake types and regions?

TROPHIC STATE

- Nutrients & Productivity
- Sediment & Accumulation
- Species Shifts
- Species Richness

Trophic State Index (TSI) Scale

Box plots: Shallow lowland drainage lakes in Southern Wisconsin

2003-2005 (mean) Eagle Lake TSI values (summer)
Setting assessment thresholds

Human disturbance gradient (e.g. % ag or developed lakeshore)

Setting Reference Thresholds

- Indicator of some previous ecological state
- Pre-settlement
- Undeveloped lakes
- Minimally impacted lakes

Setting Impairment Thresholds

Plants are a bit more complicated

TSI Thresholds By Natural Lake Community

Condition Level	Shallow			Deep			
	Headwater	Lowland	Seepage	Headwater	Lowland	Seepage	Two-Story
Excellent	< 45	< 49	< 39	< 47	< 46	< 44	< 44
Good	45 – 57	49 – 59	39 – 54	47 – 54	46 – 53	44 – 52	44 – 47
Fair	58 – 70	60 – 70	55 – 70	55 – 62	54 – 62	53 – 62	48 – 52
Poor	<u>></u> 71	<u>></u> 71	<u>></u> 71	<u>></u> 63	<u>></u> 63	<u>></u> 63	<u>></u> 53

P criteria for WI Waters – As of Sept. 9th, 2010!

Proposed Phosphorus Criteria by Type of Water Body	Total Phosphorus in ug/l		
Listed rivers	100		
All other streams	75		
Stratified reservoirs	30		
Non-stratified reservoirs	40		
Stratified "two-story" fishery lakes	15		
Stratified drainage lakes	30		
Non-stratified (shallow) drainage lakes	40		
Stratified seepage lakes	20		
Non-stratified (shallow) lakes	40		
Impoundments	Same as inflowing river or stream		
Lake Michigan open and nearshore waters	7		
Lake Superior open and nearshore waters	5		

Two-story fishery lakes	15 ug/L
Stratified (Deep) Seepage Lakes	20 ug/L
Stratified (Deep) Drainage Lakes and Reservoirs	30 ug/L
Non-stratified (Shallow) Lakes and Reservoirs	40 ug/L
Impounded waters (<14 day residence time)	75/100 ug/

Ex: Deep Seepage lakes

Ex: Shallow, lowland drainage lakes

<section-header><section-header><section-header><section-header>

How are Wisconsin lakes doing?

Figure 16. Trophic State of Assessed Wisconsin Lakes, 2010

Table 37. Summary of General Condition of TSI Assessed Lakes, 2010

All Lakes Assessed by 2010 TSI Methodology	Number Lakes	Percent (# Lakes)	Lake Acres	Percent (# Acres)
Excellent	604	14%	129,789	19%
Good	1762	41%	231,677	33%
Fair	680	16%	264,128	38%
Poor	127	3%	35,825	5%
No Condition Rating*	1074	25%	32,360	5%
Total TSI Assessed Lakes	4247	100%	693,778.57	100%

"Either no natural community assigned or small lake

http://dnr.wi.gov/org/water/condition/2010_IR/

Deep Headwater Drainage

Shallow Lowland Drainage Class=3 50% 50% 50% 40% 20% 0% 1980 1996 1998 2004 2007 2008 n=154

Shallow Seepage

Water Quality, Recreational Suitability, and Ecological Integrity of Lakes and Reservoirs

Richard Mitchell, United States Environmental Protection Agency Neil Kamman, Vermont Agency of Natural Resources

Wisconsin Lakes Convention Green Bay, WI 4-1-2010

USEPA National Lake Assessment: Wisconsin's 29 Lakes BAYFIELD DOUGLAS Nov. 5, 2007 ASHLAND Atkins L. Unnamed L Fox L. VILAS Crystal L. Plum L Schnur L. BURNETT Blueberry L. FLORENCE McLeod L. Haskell L Unnamed L. POLK WASHBURN SAWYER Price L Willow Reservoir Buckskin L Half Moon L. ONEIDA Spring L. Echo L MARINETTE FOREST Round L. Wapogasset L RUSK TAYLOR CHIPPEW ST CROIX DUNN LINCOLN LANGLADE Chequamegon Flowage MENOMINEE CLARK OCONTO, Berry L PIERCE EAU CLAIRE MARATHON DOOF SHAWANO PEPIN PORTAGE WAUPACA BUFFALO OUTAGAMIE Marl L JACKSON WOOD BROWN JUNEAU CALUMET Arrowhead L. L. Winnebago WAUSHARA Green L FOND DU LAC HEBOYGAN ≤ MONROE Little Elkhart L. SAUK COLUMBIA Swan L. RICHLAND VERNON CRAWFORD JEFFERSON WAUKESHA L. Kegonsa Oconomowoc B GRANT DANE **IOWA** Tichigan L. Ν WALWORTH KENOSHA LAFAYETTE GREEN ROCK 25 50 75 100 0 ⊐ Miles

Observation station

Determining Thresholds: Setting the Bar

For the NLA, two types of thresholds were used to determine condition:

- Nationally-consistent thresholds
 - Fixed values correspond to assessment findings
 - Applied to trophic state and recreational condition
- Regionally reference-based thresholds
 - Fixed percentile defines good/fair and fair/ poor
 - Applied to bioindicators, some habitat indicators and some stressors

Condition of the Nation's Lakes: Biological Condition

Two Ecoregions

Figure 28. NLA findings for the Upper Midwest ecoregion. Bars show the percentage of lakes within a condition class for a given indicator.

Chapter 6 Ecoregional Results

SITED STAN

Figure 29. NLA findings for the Temperate Plains ecoregion. Bars show the percentage of lakes within a condition class for a given indicator.

Condition of the Nation's Lakes: Habitat

- 55 individual habitat metrics captured at each site (550/lake).
- Metrics reduced to four indices of habitat quality:
 - Human Disturbance on Lakeshores
 - Riparian Zone Integrity
 - Littoral Zone Integrity
 - Complexity of Riparian/Littoral Interface
- Disturbance index scores assessed against nationally consistent thresholds
- Riparian/littoral indices assessed against regionally-explicit reference conditions (*corrects for expected regional differences*)

Condition of the Nation's Lakes: Habitat

*) NLA Primary indicator is Lakeshore Habitat

Condition of the Nation's Lakes: Habitat

Stressors to the Nation's Lakes: Extent, Relative Risk, and Attributable Risk

- #1 Lakeshore vegetation: Poor biology is three times more common when lakeshore vegetation cover is in poor condition. This affects 36% of lakes.
- #2 Nutrients: Poor biology is 2.5 times more common when nutrients are high. This affects about 20% of lakes.

Box plots: Shallow lowland drainage lakes in Southern Wisconsin

2003-2005 (mean) Eagle Lake TSI values (summer)

Protect Manage

Restore

Management Strategy

Management for What?

- Water quality
- Fisheries/Wildlife
- Aquatic Plants
- Shorelands
- Watersheds
- User Conflicts
- AIS
- Other

• Same approach can be used regardless of the management objective

Science- and community-based goal setting process

- Lake monitoring and assessment
- Lake management planning
- Set management objectives that can be realistically evaluated
- Public input and consensus
- Decision-making tied to objectives
- Go for it!

Protection Lake Characteristics

- Good to excellent lake conditions
- Beneficial uses are being met
- Public satisfied with resource condition
- Low impacted lakes, *generally* smaller, less developed seepage lakes in forested watersheds

Protection Goal

Maintain Existing Conditions

Protection Strategies Shoreland Management

- Most protective county lake classification
- Control density/impact of new development
- Large lot and buffer dimensional standards
- Deeper setbacks
- Limit key hole development
- Retention of natural vegetation
- Strict pier development No boat houses
- Septic monitoring and maintenance

Protection Strategies Watershed Management

- Land use planning and zoning
- Ordinance development and enforcement
 - Stormwater, construction site erosion, wetlands
- Critical Site Identification
 - Environmental corridors
 - Obvious problem sites: feedlots, drain tiles
 - Voluntary deed restrictions, best management practices, acquisition

Protection Strategies Lake Use

Boats

- No wake restrictions
- Courtesy codes
- Fisheries
 - Voluntary catch and release
 - Special regulations for unique fisheries
 - Invasives
 - Shield lakes
 - Boat inspections

Protection Strategies Education and Information

- Compliance & Stewardship
- Lake Organization

 Limited
- Monitoring Secchi, AIS, shoreland watch

Ex. Black Oak Lake

Management Lake Characteristics

- Good to fair water quality but signs of decline
- Some problems and threats exist that require active management.
 - nusiance plants, user conflicts, public complaints
 - fishing pressure/poor recruitment
 - Growth and development pressure
- Mid sized to larger lakes Higher watershed to lake area ratios
- Transitional lakes and landscapes

Management Goal

Halt degradation

Manage specific problems

SYLVAN WESTWIND

Management Strategies

- Begin with protection plan
- Conduct site and problem specific planning ex. aquatic plants, watershed management, diagnostic monitoring
- Develop a long range management plan with recommendations
Best Management Practices

- Urban runoff controls
- Grass waterways
- Buffer strips
- Manure storage/feedlots
- Sediment basins
- Land & Easements Acquisition

Management Strategies Lake Use

- Aquatic Plant Management Plans
 - Harvesting
 - Sensitive Area Designation
- Boats
 - Time of Day Use Restrictions or No Wake Zones
- Fisheries
 - reduced bag limits
 - protective slots

Aquatic Plant Management Plan

- Goals & Objectives
- Lake Information
- Analysis
- Alternatives
- Recommendations
- Implementation
- Monitoring & Evaluation

http://www.uwsp.edu/cnr/uwexlakes/ecology/APMguide.asp

Restoration Lake Characteristics

- Poor water quality ("impaired" waters)
- Frequent and potentially toxic algae blooms
- Excessive aquatic plants (often dominated by invasives)
- Not meeting beneficial uses (swimming, boating, aesthetics)
- Imbalanced fisheries rough fish

Restoration Goal

Return to some pre-existing condition

Restore beneficial uses

Clearwater state

Clearwater state

Turbid state

Restoration Strategies In-lake management

- Alum, nutrient inactivation
- Large-scale herbicide treatments
- Drawdowns
- Biomanipulation
- Fish rehabilitation (rotenone)
- Aeration
- Hypolimnetic (bottom) withdrawals

Lake Tomah Extreme Makeover

- Drawdown (1 yr)
- Carp eradication
- Shoreland restoration
- Watershed assessment
- Ag and urban BMP's
- Boating ordinance
- Fish restocking
- AIS prevention

Teaching Materials Making Fishing Fun Places to Take Kids Fishing

Wisconsin Fish

Fish Species

Last Revised: Wednesday November 04 2009

Bag, size and possession limits lifted from Lake Tomah - (02/12/09)

<u>City officials envision new life for carp infested Lake Tomah - (01/26/09)</u>

😜 Internet

What are we trying to accomplish?

Protection Grant Activities NOT requiring an approved lake plan*.

- Land Acquisition
- Wetland/Shoreland Restoration
- Ordinance Development