Communicating TMDL Goals on Agricultural Lands

Aaron Ruesch, Kevin Kirsch, and Andrew Craig
Bureau of Water Quality
Wisconsin DNR

Point sources and N(W)PDES

Waste Load
Allocation (WLA) =
8 lbs P / day

Load Allocation (LA) = 6 lbs P / day

75 ug P / L

Agricultural LA typically lumps The Good, The Bad, and The Ugly

Another problem:

```
o a
t x
a i
I m
u
```

Solution: A Better Defined Load Allocation

- 1. Split LA by land use
 - 1. Developed land
 - 2. Agricultural fields and pasture
 - 1. Dairy vs. cash grain vs. potato/vegetable
- 2. Use % reduction instead of LA
- 3. Link the LA to an implementation mechanism or field-scale tool

Percent reduction vs. load allocation

- 1. Allows watershed managers to use their own models for simulating compliance scenarios
- 2. Allows producers to estimate their own load allocation from their own estimated baseline

Plum-Kankapot 9-Key Element Plan

- STEPL
 - Watershed model that estimates load and BMP efficiency
- 1. Estimated baseline load in STEPL
- 2. Ran compliance scenarios
 - 1. Cover crops
 - 2. Streambank stabilization, etc.
- 3. Did the compliance scenario meet the TMDL percent reduction from the baseline calculated in STEPL?

Percent reduction vs. load allocation

- 1. Allows watershed managers to use their own model for simulating compliance scenarios
- 2. Allows producers to estimate their own load allocation from their own estimated baseline

$2,200 \mu g/L \div 2 = 1,100 \mu g/L$

Ag will have to do more than NR151 to meet TMDL goals

TMDL baseline **TP**

75% reduction

*SnapPlus baseline TP

*SnapPlus baseline must use the same model assumptions about ag that were used in the baseline TMDL model.

*SnapPlus baseline TP

SnapPlus automation

Thousands of subbasin, landuse, soil combinations

SUB	TMDL model LU	Soil type	AREA
1	dairy1	WtA	8
1	dairy1	MtA	5
1	dairy2	ShA	6
1	dairy2	MeC	1
1	cash1	FeC	1

Baseline TP by subbasin

Lower Fox TMDL pilot

- 70 subbasins
- 202 soil types
- 6 ag. mgmt. types
- > 12K SnapPlus fields

Green Bay

Appleton

Manito

Oshkosh

Deliverables

Subbasin	Baseline LA (lbs/acre)	TMDL % reduction	SnapPlus LA (lbs/acre)
1	2	50	1
2	1	50	0.5
3	0.5	0	0.5
4	1.5	20	1.2

Subbasin	Soil type	Baseline LA (lbs/acre)	TMDL % reduction	SnapPlus LA (lbs/acre)
1	WtA	2	50	1
1	MtA	1	50	0.5
2	ShA	0.5	0	0.5
2	MeC	1.5	20	1.2

The goal

"SnapPlus can help me figure out how to meet a LA of 1.5"

"daily load?"

