

Water Quality Standards

- 1. Designated Uses
- 2. Water Quality Criteria
- 3. Antidegradation

Designated Uses

New criteria based on biology for protecting lakes' Designated Uses

Today's Topics:

- 1. Aquatic Plant "biocriteria"
- 2. Algae metrics:
 - Chlorophyll concentrations
 - Nuisance algal blooms
- 3. Two-Story Fisheries:
 Oxythermal Habitat criteria

Rule Revision Timeline

- 1. Designated Uses
- 2. Biocriteria & Phosphorus Response Criteria
- 3. Site-specific criteria for phosphorus

Moving concurrently

Aquatic Plant Biocriteria for Lakes & Reservoirs

"A macrophyte bioassessment approach for north temperate lakes" In review: Journal of Envmtl. Mgmt.

Ali Mikulyuk
Martha Barton
Jennifer Hauxwell
Katie Hein
Ellen Kujawa

Kristi Minahan Michelle Nault Daniel Oele Kelly Wagner

Why aquatic plants?

- More than 10 years of research
- Widespread & common
- Respond to human disturbances
- Sensitive to nutrients

Chlorophyll a

Nutrients

Proposed Aquatic Plant Biocriteria

Lake Type	Not Attaining	Biocriteria	Excellent
Northern Seepage	Moderate ≥ 69%		Moderate < 69% & Tolerant ≤ 1%
Northern Drainage	Sensitive < 42% & Moderate < 83%	Sensitive < 42% & Moderate ≥ 83%	Sensitive ≥ 42%
Southern Seepage	Tolerant ≥ 49% & Moderate ≤ 42%	Tolerant ≥ 49% & Moderate > 42%	Tolerant < 49%
Southern Drainage	Tolerant ≥ 28%	Tolerant < 28%	

Not attaining: More tolerant species

Excellent: More sensitive species

Steps to Developing Lake Plant Biocriteria

- 1. Disturbance Index for lakes
- 2. Plant tolerance groups
- 3. Biocriteria for each lake type

Lake Disturbance Index

- Population
 - Population density
 - House density
 - Road density
- Runoff and Nutrients
 - Conductivity
 - Total Phosphorus
 - Chlorophyll a
 - Water clarity
- Land Use
 - Urban, Grassland, Pasture, Cropland
 - 500 meter buffer around the lake
 - Upstream watershed

Determine each plant species' tolerance

3 Tolerance Groups for 59 Species Spaffu

Sensitive

- Many rosettes
- Small, short
- Require water clarity
- Low biomass

Moderate

- Many pondweeds
- Floating-leaf or submersed species
- Prefer intermediate clarity/enrichment

Tolerant

- Free-floating or tall & dense with fine leaves
- Not light-limited
- High biomass
- Ubiquitous

Plant Survey

Calculate percent cover of each tolerance group

Sensitive:

Moderate:

60 %

Tolerant:

25 %

Proposed Plant Biocriteria Metric

Grouped lakes with similar disturbance levels together

- 1. Northern Seepage Lake
- 2. Northern Drainage Lake
- 3. Southern Seepage Lake
- 4. Southern Drainage Lake

Proposed Aquatic Plant Biocriteria

Lake Type	Not Attaining	Biocriteria	Excellent
Northern Seepage	Moderate ≥ 69%	Moderate < 69% & Tolerant > 1%	Moderate < 69% & Tolerant ≤ 1%
Northern Drainage	Sensitive < 42% & Moderate < 83%	Sensitive < 42% & Moderate ≥ 83%	Sensitive ≥ 42%
Southern Seepage	Tolerant ≥ 49% & Moderate ≤ 42%	Tolerant ≥ 49% & Moderate > 42%	Tolerant < 49%
Southern Drainage	Tolerant ≥ 28%	Tolerant < 28%	

Not attaining: More tolerant species

Excellent: More sensitive species

Aquatic Plant Phosphorus Response Criteria

Lake Type	Phosphorus Response Criteria	
Northern Seepage	Sensitive > 90%	
Southern Seepage	Sensitive > 75%	
All Drainage	Sensitive > 69%	

- Developed using the same methods as plant biocriteria
- Used species most sensitive to <u>phosphorus</u> instead of those most sensitive to broader disturbance (multiple factors)

Algal metrics

- Chlorophyll a conc.
- Nuisance algal bloom frequency

Why Algae (Chlorophyll a)?

- Sensitive to phosphorus
- Impacts aquatic life and recreation
- Used to develop phosphorus criteria
- Used for assessment since 2012

Proposed Algae Criteria

Lake Type	Recreation Use	Aquatic Life Use
Unstratified	< 30% of days with nuisance algal bloom	≥ 27 ug/L
Stratified	< 5% of days with	
Two-Story Fishery	nuisance algal bloom	≥ 10 ug/L

Adjusting previous Aquatic Life thresholds

Algal abundance (chlorophyll a concentration)

Set at high end of eutrophic, BEFORE turns hypereutrophic

Adjusting previous Aquatic Life thresholds

Algal abundance (chlorophyll a concentration)

Set at high end of eutrophic, BEFORE turns hypereutrophic

Recreation: Frequency of Nuisance Algal Blooms

Lake Type	Recreation Use	Aquatic Life Use
Unstratified	< 30% of days with nuisance algal bloom	≥ 27 ug/L
Stratified	< 5% of days with	
Two-Story Fishery	nuisance algal bloom	≥ 10 ug/L

Defining "Nuisance" blooms

- Goal: Protect primary contact recreation (swimming)
- Previous literature (1980s): "Nuisance" = 20 ug/L chl a
 - "Nuisance" blooms → "Severe" blooms → "Very severe" blooms
- Citizen lake monitoring network → thousands of chlorophyll samples and corresponding user perception ratings of water quality (2002-2016)
- At different chlorophyll concentrations, how do Wisconsin users rate their experience? Is 20 ug/L appropriate? Statistical analysis...

Observations:

Perception

1=Beautiful, could not be any nicer

2=Very minor aesthetic problems; excellent for swimming and boating enjoyment

3=Swimming and aesthetic enjoyment of lake slightly impaired because of high algae levels

4=Desire to swim & level of enjoyment of lake substantially reduced because of algae; would not swim, but boating OK 5=Swimming and aesthetic enjoyment of lake substantially reduced because of algae levels

Defining "Nuisance" algal blooms

20 ug/L is appropriate for "Nuisance" blooms in WI:

Half of lake users perceive some impairment to their enjoyment & recreation due to high algae levels, and some would not swim.

Selecting frequency of nuisance blooms

- Deep Lakes: 5% summer days is the goal stated in P Tech. Supp. Doc.
- Shallow Lakes:
 - No goal specified in P Rule
 - WisCALM used 30% of summer days
 - Ran independent analysis of shallow reference lakes
 - 75% of reference shallow lakes have nuisance blooms less than 30% of the time
 - Kept frequency at 30%; setting it lower might create unrealistic expectations
 - At this level, "severe" or "very severe" blooms are low (1-7% of days)

Additions/removals of impaired waters

Lakes (~600 sites assessed)

- Plant biocriteria (new):
 - ~60 lakes would be listed as impaired for plants
 - Only 23 of these not already listed for algae or P
- Plant phosphorus response indicator (new):
 - ~8 lakes exceed P criteria but have good scores on aquatic plant P indicator
- Algal metrics (codifying previous guidance):
 - Number of impaired waters stays the same
 - There are ~160 already listed for algal metrics

Two-Story Fishery Lakes: Oxythermal Habitat Criteria

"Evaluation of oxythermal metrics and benchmarks for the protection of cisco (Coregonus artedi) habitat quality and quantity in Wisconsin lakes"

In review: Canadian Journal of Fisheries & Aquatic Sciences

John Lyons
Tim Parks
Kristi Minahan
Aaron Ruesch

Two-Story Fishery Lakes*:

Top Story – Warm and Coolwater Fishery e.g., Bass, Bluegills, Walleye, Musky

Bottom Story – Coldwater Fishery e.g., Cisco, Lake Whitefish, Lake Trout

* ~200 Two-Story Fishery Lakes: ~ 1.3% of WI total lakes

Lake Coldwater Fish Need:

- Max. Water Temperatures < 57-73°F*
- Dissolved Oxygen > 6 mg/l

* < 73°F for Cisco and Brook, Brown, & Rainbow Trout

< 66°F for Lake Whitefish

< 57°F for Lake Trout

Summer: Only middle part of water column has good temp & DO

^{*} If summer gets longer or if eutrophication occurs, Thermocline (middle layer) may run out of oxygen, resulting in fish kill

Proposed Criteria: > 1 m of Column: > 6 mg/l DO + Cold Water*

(Impaired if more than 1/3 of yrs do not attain)

* Thermal limit depends on species

Oxythermal Habitat Quantity Considerations:

- Layer's narrowest point in summer is key
- Varies within and among years; need multiple samples to characterize
- Sensitive to weather, climate trends, and lake eutrophication
- No change anticipated for discharge permits

Takeaways

biological condition of lakes
 Algal metrics will protect

 Algal metrics will protect recreation & aquatic life

 Two-story fishery metric will help assess condition of these lakes for coldwater fish

