

WISCONSIN STATE A JOURNAL

Fishing opener means no walleye dinners from the Minocqua Chain of Lakes

BARRY ADAMS badams@madison.com, 608-252-6148 Apr 26, 2015 0

RHINELANDER (WITI) — The number of Wisconsin lakes stocked with larger walleye will skyrocket in the next two years as the state harnesses a \$12 million funding plan to boost walleye populations statewide, state fisheries officials say.

Walleye recruitment is declining in Wisconsin

Largemouth bass density is increasing

Annual change in LMB >8in spring catch per mile

- Increase (0-4%)
- Strong decline (>4%)
- Strong increase (>4%)
- Decline (0-4%)

Temperature as ecological "master factor"

Is water temperature related to fish community change?

Long-term temperature records are rare

Multi-faceted approach to increase availability of lake temperature data

Citizen monitoring pilot program

Model to hindcast and forecast temperatures

for thousands of WI Lakes

Citizen monitoring

48 lakes spanning gradients of size, clarity, location

Hourly monitoring of surface water temperature

Deployed ASAP post-ice-out, retrieved as late as possible

before ice-on

Citizen monitoring

Hindcast and forecast lake temperatures

Read et al. 2014. Ecol. Model. 291C: 142-150

Hindcast and forecast lake temperatures

Read et al. 2014. Ecol. Model. 291C: 142-150

Model outputs

- Max. surface water temp
- Mean summer surface temp
- Growing degree days
- Duration of ice free season
- Duration of stratification

- CV in surface temp, 0-30 and 30-60 days post-ice off
- Height of water column and days between 19-23 °C
- Date at which surface temp> 8.9
 C and 5 C

Contemporary trends in water temperature

GH1

What does this mean for fish?

GH1 GH takes over here

Gretchen Hansen, 10/22/2015

Water temperature influences fish

Projected future water temperatures

Surface water temperatures

Ice-cover duration

How do we expect lakes to change?

Mid-century (2040-2059)				
Lose	Maintain Gain			
27.2	63.2	9.6		

How do we expect lakes to change?

Mid-century (2040-2059)		Late century (2070-2089)			
Lose	Maintain	Gain	Lose	Maintain	Gain
27.2	63.2	9.6	62.3	30.3	7.4

How do we expect lakes to change?

Mid-century (2040-2059)		Late century (2070-2089)			
Lose	Maintain	Gain	Lose	Maintain	Gain
27.2	63.2	9.6	62.3	30.3	7.4

LARGEMOUTH BASS (% of lakes)

Mid-century (2040-2059)		Late century (2070-2089)			
Lose	Maintain	Gain	Lose	Maintain	Gain
7.4	78.2	14.3	2.6	66.2	31.2

From models to management

- Prioritize management actions
 - Protect resilient lakes
 - Guide stocking
- Bound realistic expectations
 - Lake-specific
 - Classify lakes

Acknowledgements

- Citizen volunteers, past and present!
- CLM coordinators and WDNR biologists
- Dan Isermann and Andrea Musch, UWSP
- Kevin Wehrly (MI), Pete Jacobson (MN)
- Midwest Glacial Lakes partnership
- Funding from CLMN, Sportfish restoration funds, USGS NWCCWSC, NECSC

Walleye recruitment predicted by lake morphometry and water temperature

Walleye recruitment predicted by lake morphometry and water temperature

Updated from Hansen et al. 2015 CJFAS 72(5): 661-672

Largemouth bass abundance predicted by water temperature, lake order, and Secchi

Long-term fish community changes

Long-term fish community changes

Long-term fish community changes

