

Moving from Monitoring to Management

Jo Latimore - Michigan State University @JoLatimore

Stream Monitoring

- Macroinvertebrates
- Habitat
- Road-Stream Crossing Inventories
- Stream Flow

Lake Monitoring

- Transparency
- Phosphorus
- Invasive Plants
- Score the Shore
- Chlorophyll
- DissolvedOxygen/Temperature
- Aquatic Plant Mapping

For researchers, managers...

Challenges	How Met
Access to field sites	Volunteers have access to private and remote sites
Sufficient temporal scale	Emphasis on long-term monitoring
Sufficient spatial scale	Statewide scope
Resources (funding , personnel) to conduct large-scale monitoring	Hundreds of volunteers submit data
Connecting research to real-world needs	Monitoring programs, tools, and training developed in response to public interests and needs
Building public support for freshwater research and management	Public engagement in data collection, sharing of outcomes builds support

MiCorps Volunteer Monitoring

Improved spatial and temporal coverage

	Streams	Lakes
State	Every 5 years	70 per year
Volunteers	2x per year	225 per year

Large scale
Long-term

High-quality data

Predicting Lake Trophic Status by Relating Field Measurements to Satellite Imagery

Phosphorus, zebra mussels, and harmful algae blooms

Fig. 8 – Influence of dreissenid mussels on mean euphoticzone microcystin concentration (+ 1 SE) for lakes with TP between 5 and 10 μ g L⁻¹ (left panel) and lakes with TP between 10 and 26 μ g L⁻¹ (right panel).

- eDNA-based monitoring
- Community-based sampling
- Smart phone-based reporting

For volunteers...

Challenges	How Met	
Knowledge of science-based monitoring methods	Standardized protocols and training	
Data management	Web-based database with strict quality controls	
Assuring validity of volunteer-collected data	Side-by-side field sampling with staff; single lab for all analysis; other quality assurance procedures	
Data interpretation	Annual training and conference; annual reports; one-on-one guidance	
Awareness of management options	Annual training and conference; individualized guidance	

Millers Creek Rainwater Project

After

Before

After

Before

Invasive Species Surprise

Starry Stonewort Invasive Species

Starry Stonewort multiplied to 13 acres within weeks.

Mapping done by consultant

Timeline

- May 22, 2015 Pre-treatment survey for invasive weeds to be treated, particularly Hybrid Eurasian Milfoil.
- June 9, 2015 Herbicide treatment by consultant
- June 18, 2015 Volunteers discover Starry
 Stonewort during Exotic Aquatic Plant Watch survey
- Sept. 21, 2015 Treatment for Starry Stonewort (canals 9 acres & offshore 13 acres) and remaining Milfoil (6 acres)

- Indian Lake (Kalamazoo Co.): Lake data used to justify \$230k grant to develop a watershed management plan to reduce nutrient loading
- Eagle Lake (Cass Co.): Data informed the development of a Special Assessment District to fund aquatic plant management, and to influence the local zoning board to limit development along the lakeshore
- Stony Lake (Oceana Co.): Plant data educates property owners and developed a invasive species control plan

Positive effects of volunteering

- Improved science literacy
- Social/community connections
- Access to technical and scientific expertise
- Increased confidence in ability to engage in freshwater issues
- And...

Communicate and Coordinate

Agencies, researchers, and local volunteers

Needs, interests, and capabilities

Collaboration and science-based natural resource management

For more information...

www.MiCorps.net

Dr. Jo Latimore
Michigan State University
latimor1@msu.edu

517-432-1491

@JoLatimore