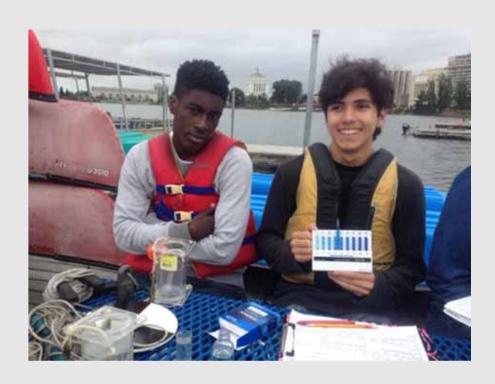


Wisconsin and the Secchi Dip-In, 2010-2015

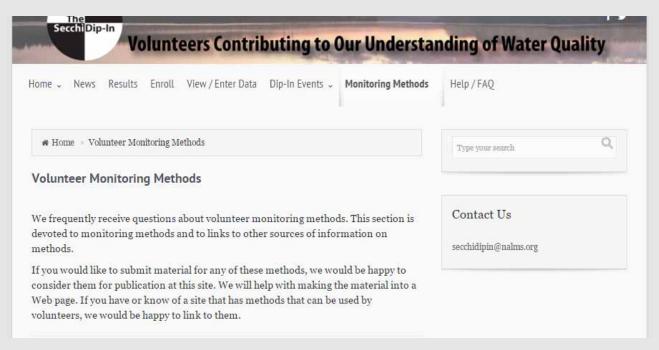
Lauren Salvato, North American Lake Management Society Wisconsin Lakes Partnership Convention April 1, 2016

Mission Statement:


To involve citizen scientists in monitoring the water quality of North America's lakes and their watersheds

What we do:

 Organize an annual data-gathering event during Lakes Appreciation month for North American lakes, reservoirs, and other waterbodies



Oakland High School July 2015

Photo Credit: Katie Noonan

 Provide educational materials and training for anyone engaged in managing lakes and their watersheds

 Promote public awareness and stewardship of lakes and watersheds

> Northern Indiana Lakes Festival June 2015

 Maintain long-term transparency monitoring data for use in research on aquatic systems and the discovery of trends

THE 2015 SECCHI DIP-IN REPORT

 Prepare annual reports analyzing Secchi Dip-In data and make data available for all interested stakeholders

Collinwood Lake July 2015

luntee

Photo Credit: Lake George Association and Doreen Nowak

The First Great American Secchi Dip-In

Drs. Bob Carlson, Dave Waller and Jay Lee

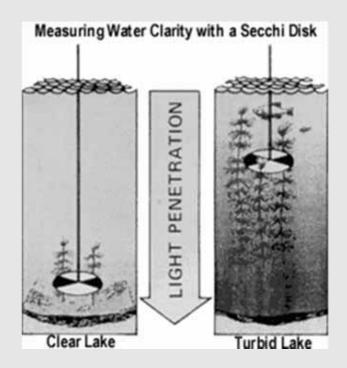

- Kent State University, 1994
- Indiana, Illinois, Michigan, Minnesota, Ohio, and Wisconsin
- 800 volunteers
- 40% response rate from data solicitation

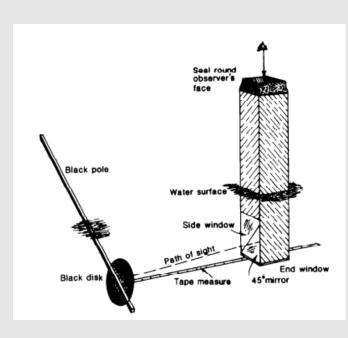
Photo: http://www.secchidipin.org/index.php/about/about-us/

The Secchi Disk

- The Secchi disk is utilized by volunteers to take disk transparency measurements on their waterbodies.
- Named after Father Pietro Angel Secchi, scientific adviser to the Pope
- A typical disk is a 20 cm with alternating black and white quadrants
- This basic tool is one of the oldest used by limnologists

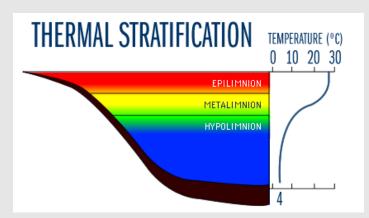
<u>Images: https://www.pca.state.mn.us/water/citizen-lake-monitoring-program</u> <u>http://www.secchidipin.org/wordpress/wp-content/uploads/2015/04/secchi6.gif</u>

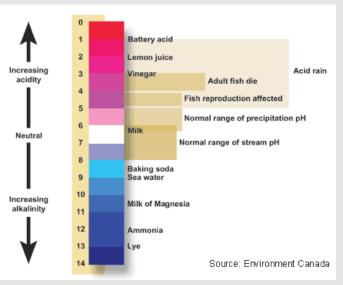
Other transparency measurements


Turbidity Tube

Turbidity Meter

Horizontal Black Disk

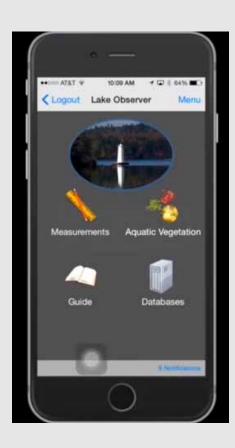

Images: https://extension.usu.edu/utahwaterwatch/htm/tier-1/turbidity/
http://www.instrumentchoice.com.au/instrument-choice/environment-meters/turbidity-meters
http://www.horizons.govt.nz/assets/managing-our-environment/publications-consents/NZ-Energy/Council-evidence/Black-disc-protocol.pdf

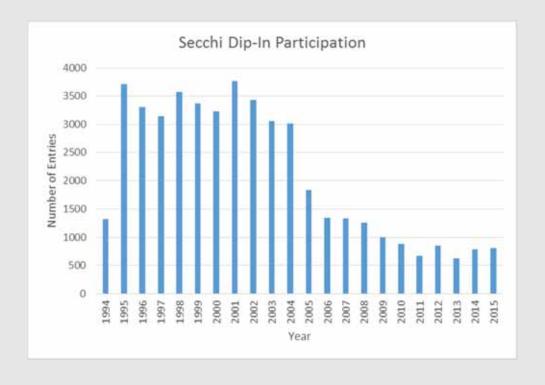

Additional water quality parameters

Temperature

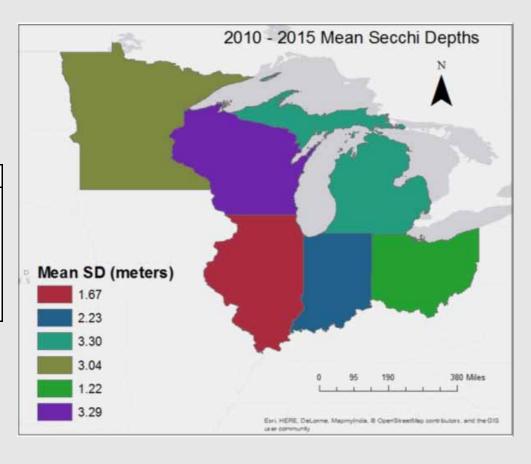
Dissolved Oxygen

• pH




Data Entry

Secchi Dip-In Program Participation



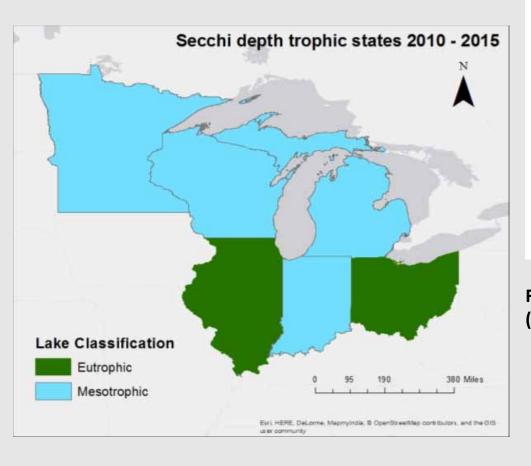
At its peak, the 2001 Dip-In had nearly 200 programs and 45 provinces and states participating

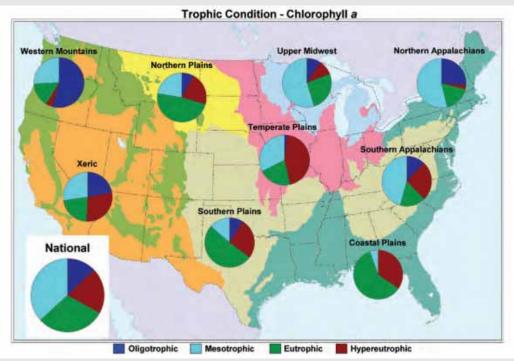
Results

Descriptive statistics, 2010 - 2015

State	Entries	Mean (meters)	Minimum	Maximum	Variance
Illinois	88	1.67	0.23	10.50	2.98
Indiana	227	2.23	0.43	7.35	1.55
Michigan	243	3.30	0.30	10.50	3.63
Minnesota	594	3.04	0.30	19.36	5.05
Ohio	22	1.22	0.23	2.93	0.39
Wisconsin	158	3.29	0.46	14.02	4.69

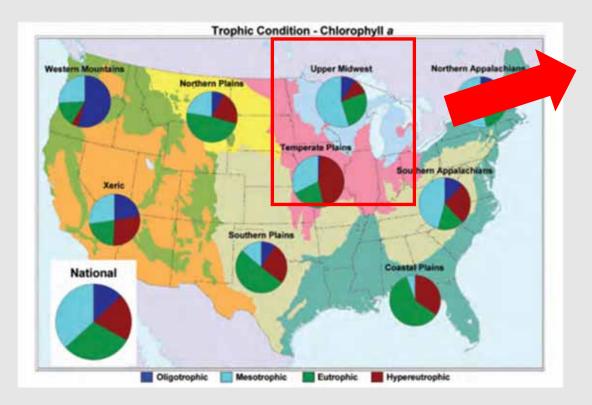
Lake Classifications and Carlson Trophic State Index (TSI)


Classification	Oligotrophic	Mesotrophic	Eutrophic	Hypereutrophic			
Transparency	Clear	Less clear	Transparency <2 meters	Transparency <1 meter			
Nutrients	Low TP < 6 μg/L	Moderate TP 10-30 μg/L	High TP > 35 μg/L	Extremely high TP > 80 μg/L			
Algae	Few algae	Healthy populations of algae	Abundant algae and weeds	Thick algal scum Dense weeds			
D.O.	Hypo has D.O.	Less D.O. in hypo	No D.O. in the hypo during the summer	No D.O. in the hypo during the summer			
Fish	Can support salmonids (trout and salmon)	Lack of salmonids, Walleye may predominate	Warm-water fisheries only. Bass may dominate	Rough fish dominate, summer fish kills possible May discourage swimming and boating			
TSI(Chl) = TSI(TP) = TSI(SD)							


A numeric method for comparing lake data using Secchi depth, chlorophyll-a, total phosphorous and total nitrogen.

TSI (SD) = 10(6 - (InSD/In2))

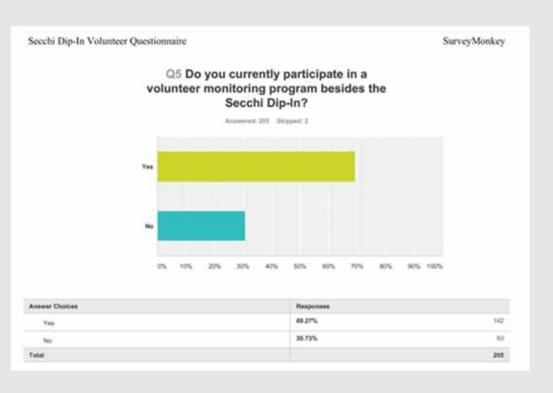
Table from Melissa Clark Lecture, Lake and Watershed Management

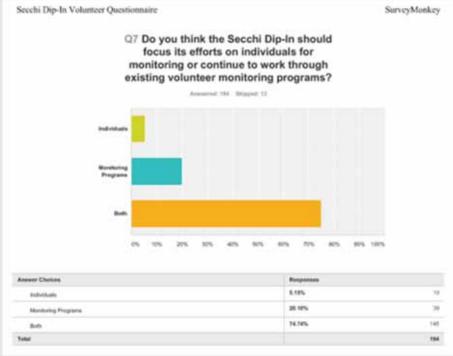

Results




From 2007 Chlorophyll-a trophic state across nine ecoregions (Level III) National Lakes Assessment

Results


From 2007 Chlorophyll-a trophic state across nine ecoregions (Level III)
National Lakes Assessment



Lessons Learned from 2015 Dip-In

Survey conducted in September 2015

Lessons Learned

Creative Outreach Campaign

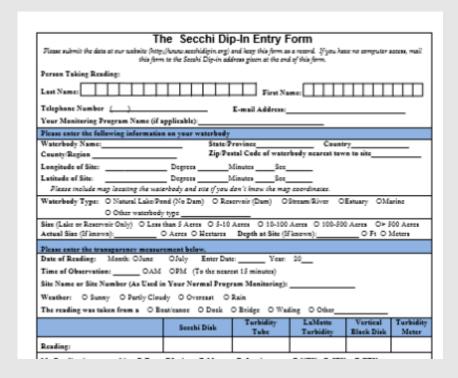
The 22nd Annual Secchi Dip- In begins July 1st!

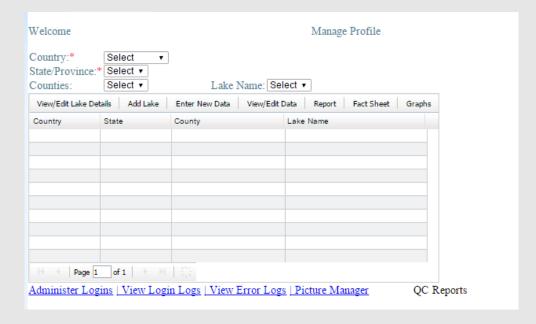
Your participation gathering water transparency measurements is an invaluable part of the effort to monitor lakes around the world.

Participate in the 2015 Secchi Dip-In!

(It's the whole month of July!)

2015 marks the 22nd anniversary of the Dip-In and the 150th anniversary of the very first Secchi dip by Father Pietro Angelo Secchi. Each summer Dip-In participants add their water transparency measurements to a unique effort and thus demonstrate that they are an invaluable part of the effort to monitor lakes around the world. We invite you to participate in this year's effort.

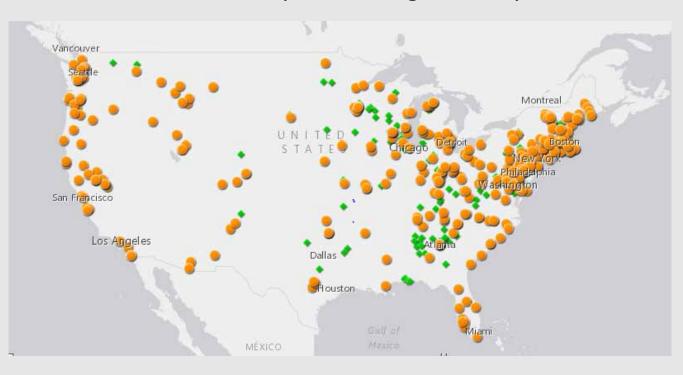

Changes at Dip-In HQ


Dr. Robert Carlson, eminent limnologist and founder of the Secchi Dip-In program, has transferred its management to the North American Lake Management Society (NALMS). Over the years, NALMS has been a stalwart supporter of the Dip-In.

It was important to Dr. Carlson that the Dip-In endure after he retired from Kent State University, the longtime home of the Dip-In. NALMS was a natural choice to carry on that legacy given our long history together and how well the Dip-In fits with the mission of NALMS, "to forge partnerships among citizens, scientists, and professionals to foster the management and protection of lakes and reservoirs for today and tomorrow."

Goals for the 2016 Dip-In

Update database and data entry process



www.secchidipin.org/data

Goals for the 2016 Dip-In

Volunteer Water Quality Monitoring Directory of the US

 Incorporate individuals in addition to volunteer monitoring programs to expand citizen science across North America

Green represents monitoring subprograms

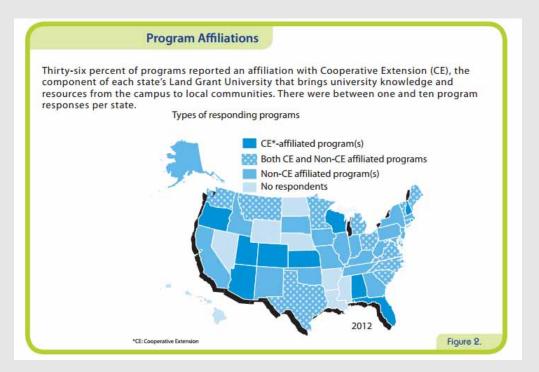
Orange represents monitoring programs

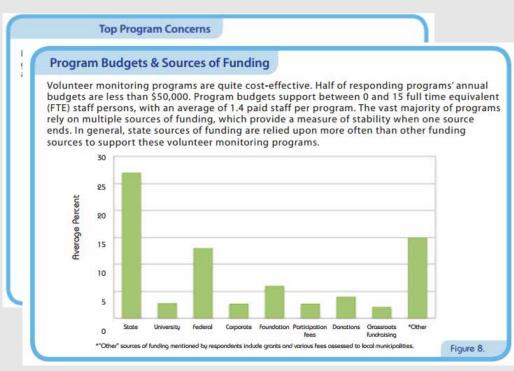
http://www.arcgis.com/home/webmap/viewer.html?webmap=20eccf0e83af47ca9e65bea9d399dd87&extent=-126.0738,19.505,-65.1656,54.7418

Lake Observer App

Through a collaboration with the US Environmental Protection Agency, the North American Lake Management Society and Global Lake Ecological Observatory Network (GLEON) invited members to test the Lake Observer mobile app during the 2015 Secchi Dip-in.

https://www.lakeobserver.org/



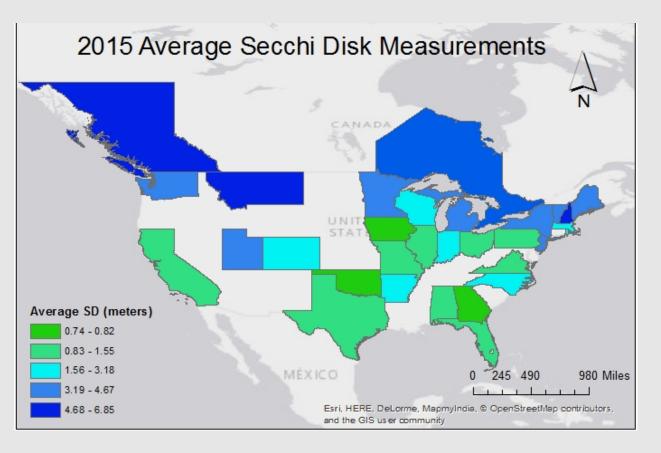

global lake ecological observatory network

2011 Report: Volunteer Water Monitoring Programs

Thank you

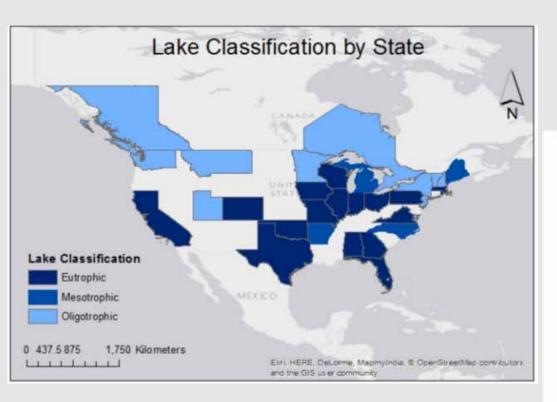
Lauren Salvato, Secchi Dip-In Program Coordinator lsalvato@nalms.org

Volunteers Contributing to Our Understanding of Water Quality

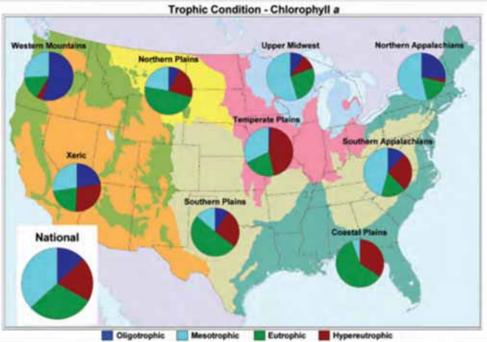


www.secchidipin.org | @SecchiDipIn

A Program of the North American Lake Management Society


Results

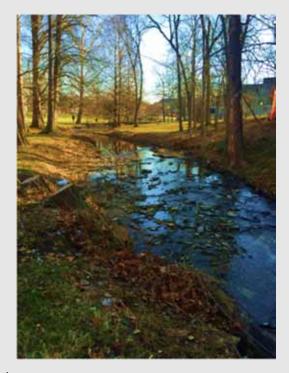
State	Observations	Mean (meters)	Minimum	Maximum	Variance
AL	3	1.47	0.60	3.01	1.79
AR	38	2.69	0.50	5.00	1.26
ВС	48	6.85	1.24	22.00	26.94
CA	16	6.85	0.62	2.50	0.24
со	10	1.34	0.76	6.30	3.21
FL	33	1.95	0.20	5.33	0.89
GA	9	0.78	0.28	1.08	0.07
IA	5	0.82	0.20	1.24	0.23
IL	21	1.35	0.43	3.81	0.81
IN	70	2.11	0.43	6.46	1.81
MA	13	2.16	0.40	4.50	1.46
ME	5	4.67	2.50	7.70	5.98
MI	25	4.24	1.68	7.93	3.66
MN	171	3.59	0.22	19.36	5.43
MO	2	1.30	1.09	1.50	0.08
MT	3	6.59	5.64	8.38	2.40
NC	2	2.68	2.00	3.35	0.92
NH	23	6.38	2.30	12.00	7.86
NJ	31	3.82	2.13	5.94	1.51
NY	32	4.42	0.40	11.00	5.74
ОН	13	1.14	0.84	1.60	0.07
ОК	71	0.74	0.08	1.90	0.14
ON	12	4.74	2.50	6.00	1.29
PA	36	1.55	0.40	4.30	0.54
RI	7	1.97	0.40	6.45	4.58
TX	5	1.09	1.04	1.15	0.001
UT	14	4.39	0.27	8.25	10.55
VA	21	1.14	0.30	2.42	0.32
VT	67	4.41	1.40	12.00	4.80
WA	10	4.15	1.00	7.60	8.33
WI	31	3.18	0.69	8.75	4.08


^{*}SD depth in meters

^{**} BC and ON are provinces in Canada

TSI (SD) = 10(6 - (InSD/In2))

TSI(CHL) = 9.81 ln(CHL) + 30.6



Chlorophyll-a trophic state across nine ecoregions (Level III) From 2007 National Lakes Assessment

April 16, 2016

Citizen Science Day event at the Jordan River, Indiana University Bloomington

campus

Links: http://staging.citizenscience.org/2016/02/22/downloadable-logos-for-citizen-science-day/

Photo Credit: Lauren Salvato