Climate Change, Precipitation Trends and Water Quality

David S. Liebl

Wisconsin Lakes Partnership Convention Stevens Point 4/25/14

Wisconsin Precipitation Trends: 1950-2006

Projected change in annual precipitation

+ 5-15% 1980-2055 (SRES A1B)

It's likely to become wetter, not drier

<u>Climate risks to water quality</u>

<u>Temperature</u>		
	Hot	Increased water temperatureAlgal blooms, Habitat loss
	Windy	Sediment re-suspensionTurbidity
	Dry	Low flows and water levelsWithdrawal, Bank erosion
Precipitation		
	Wet	High flows and water levelsBank erosion, Contaminants
	Intense	More erosion and floodingSoil erosion, Contaminant re-suspension
	Ісу	Increased salt useChloride concentrations

Seasonal change in max temperature

1980-2055 (SRES A1B)

Winter +6-7°F

Spring +5-6°F

13

12

11

10

9

5

3

2

0

-1

-2 -3

-4

-5

13 12

11

10

9

8

5

3

2

1 0

> -1 -2 -3

-4

-5

Center for Cl

Nelson Institute University of Wisconsin - Madison

ic Resea

WISCONSIN

CLIMATE CHANGE IMPACTS

INITIATIVE ON

4 <mark>H</mark>

4 JL

Increasing surface water temperature:

More frequent algal blooms

Lake Winnebago

Increasing water temperature: Higher surface wind speeds

Higher wind speeds: Increased turbidity

Lake Superior regional wind speeds - Desai, et al 2009

Warmer winters + less ice cover: Increased surface evaporation

Lower Great Lakes water levels

Winter +6-7°F

December 2012

<u>Higher temp + Less summer rain = **Drought**</u>

Summer temperature +4-5°F

Summer rainfall +0-5%

An incentive to irrigate?

Wisconsin Driftless Area Irrigation Well Locations

Source: WDNR 2013 Created by: Bob Smail

Projected change in annual peak temperatures

1980-2055 (SRES A1B)

+10-25 days >90°F

<u>Heat waves and drought = increased water use</u>

Wisconsin has over 7,500 high capacity wells

Data: Wisconsin Department of Natural Resources Credit: Kate Prengaman/Wisconsin Center for Investigative Journalism

Irrigation
Industrial
Municipal

Projected changes in Wisconsin's precipitation

Projected change in > 2" rain + 2-5/10yr 1980-2055 (SRES A1B)

The trend continues over time

Projected change in > 2" rain + 4-7/10yr 1980-2090 (SRES A1B)

Storm frequency

Storm intensity

Both are projected to increase

Soil loss from increased precipitation

Figure 3. Wisconsin Buffer Initiative estimates of sediment delivered to watershed outlet. (1 t/acre = 224 tonnes/sq km) - Diebel et al. 2005 Climate Impacts on erosion difficult to predict, best estimate +130-150%

"Soil conservation and water quality are compatible with current and emerging expectations of Wisconsin's farmlands, provided that practices we largely know how to do are widely implemented by our farmers." - WICCI Soil Conservation Working Group

Runoff from large storm events transports nutrients and sediment to lakes, degrading water quality and causing eutrophication.

Photos: R. Lathrop

Photo: Melvin McCartney

Seasonal change in precipitation

1980-2055 (SRES A1B)

Spring **+10-20%**

Fall +5-10%

Seasonal change in max temperature

1980-2055 (SRES A1B)

Spring +5-6°F

Fall +6°F

Climate Benefit

Increased groundwater recharge

Winter +6-7°F

Winter Temp +6-7°F

Winter Precip +20-25%

More winter/spring precipitation

- Flooding from increased winter spring rains
- Heavier snow and/or ice storms

Changing winter weather

Minneapolis weather changing to...

Changing winter weather

....Rockford weather.

Increased road de-icing

Questions?

