Evolution of Phosphorus Criteria for Lakes and Reservoirs

> Tim Asplund and Matt Diebel Wisconsin DNR

Wisconsin Lakes Convention April 11, 2013

#### Acknowledgements

Jim Baumann

AA ALAI ALAI

- Paul Garrison
- Tim Simonson
- John Lyons
- Buzz Sorge
- Jennifer Filbert

- Amanda Minks
- Aaron Larson
- Kristi Minahan
- Gina LaLiberte
- Paul Cunningham
- Scott Van Egeren



#### Phosphorus from many Point and Nonpoint Sources







#### **Recreational Impairments**



- Discourage beach use
- Aesthetics of nearshore lake use
- Swimming impairments

#### Fish and Aquatic Life Impairments



alsought heread





### Human Health Concerns







- S. NR 102.06 phosphorus water quality standards criteria for streams, lakes and Great Lakes
- Ch. NR 151 additional nonpoint source performance standards and prohibitions
   phosphorus index for farm fields
- Subch. III, NR 217 water quality based effluent limits



- NR 102 and NR 217 changes became effective December 1, 2010
- EPA approved NR 102 changes on December 30, 2010
- NR 151 changes became effective January 1, 2011
- Guidance being developed on a number of topics

### Why Develop the Criteria?

- Obvious water quality problems in state caused by excess nutrient loading
- Numeric goals for protecting or restoring Recreational and Fish and Aquatic Life Uses
- EPA requirement

A .... ALA. ALA.

#### How Are Criteria Used?

- Goal for lake and stream management
- Used as a factor to determine impaired waters (or not impaired)
- Target for TMDLs

ALAA ALAA ALAA

 Basis for water quality based effluent limits for point sources

#### Chapter NR 102 - P Criteria

- Rivers 100 ug/l
- Streams 75 ug/l
- Lakes and Reservoirs 15 40 ug/l
- Lake Michigan 7 ug/l

alas while Ardenade

- Lake Superior 5 ug/l
- No ephemeral streams, wetlands, LAL waters



- Lakes less than 5 acres in size
- Wetlands
- Waters impounded that don't have sufficient water residence time to be considered as a reservoir (e.g. millpond)

### Specific Lake Criteria

2-story fishery lakes - 15 ug/l

And An and An Andrew Andrew

- Stratified seepage lakes 20 ug/l
- Stratified drainage lakes 30 ug/l
- Stratified reservoirs 30 ug/l
- Non-stratified lakes 40 ug/l
- Non-stratified reservoirs 40 ug/l



- Seepage vs drainage
- Stratified vs non-stratified
- Two story fishery
- Reservoir vs lake
- Reservoir vs impounded water

#### **Wisconsin Lake Classification**



#### LANDSCAPE POSITION



# LAKE DEPTH MATTERS **DEEP LAKE Stratification** Temperature **SHALLOW LAKE**

**Continuous P Recycling** 



Defined by lake surface area to maximum depth ratio

## Natural Lake "Communities"

| Natural Community         | Stratification Status Hydrology |                    |
|---------------------------|---------------------------------|--------------------|
| Lakes less than 10 acres  |                                 |                    |
| Small                     | Variable                        | Any Hydrology      |
|                           |                                 |                    |
| Lakes 10 acres or greater |                                 |                    |
| Shallow Seepage           | Mixed                           | Seepage            |
| Shallow Headwater         | Mixed                           | Headwater Drainage |
| Shallow Lowland           | Mixed                           | Lowland Drainage   |
| Deep Seepage              | Stratified                      | Seepage            |
| Deep Headwater            | Stratified                      | Headwater Drainage |
| Deep Lowland              | Stratified                      | Lowland Drainage   |
|                           |                                 |                    |

| Other Classifications (any size) |            |                                  |
|----------------------------------|------------|----------------------------------|
| Spring Ponds                     | Variable   | Spring Hydrology                 |
| Two-Story Lakes                  | Stratified | Any hydrology                    |
| Impounded Flowing Waters         | Variable   | Headwater or Lowland<br>Drainage |

### Paleolimnology

- Indicator of previous ecological state
- · Pre-settlement
- Undeveloped lakes
- Minimally impacted lakes
- Top/bottom (Tier 1) or full core (Tier II)



"Stratified two-story fishery lake" means a stratified lake which has supported a cold water fishery in its lower depths within the last 50 years.



(from Sharma et al. 2011)

#### Reservoirs vs. Impounded Flowing Waters

AA ... AA AA ... AA

- Both are waterbodies created or augmented by a dam, with at least half the depth due to the presence of the dam (otherwise it is a lake)
- Reservoirs have > 14 day residence time, so are subject to lake criteria
- Impounded flowing waters (< 14 day residence time) are subject to river/stream criteria



- Minimize risk of nuisance algal blooms -
  - 5% chance of 20 ug/l chl. a bloom
  - 1% chance of 30 ug/l chl. a bloom
- Prevent shift in shallow lakes from macrophytes to algal domination
- Protect sport fisheries
- Maintain dissolved oxygen in hypolimnion of 2-story lakes
- Protect and provide margin of safety for deep seepage lakes

### Preventing nuisance algal blooms

allowed Ardenal



#### Stable States in Shallow Lakes

#### **Clear State**

- clear water
- low algal biomass
- high macrophyte biomass

#### **Turbid State**

- murky water
- high algal biomass
- sparse macrophytes







40 ug/L prevents "forward switch" to algal dominance in shallow lakes

#### Protecting Fish and Aquatic Life



Cool water species

Warm water species

Source "Minnesota Lake Water Quality Assessment Report: Developing Nutrient Criteria", Third Edition, September 2005, Minnesota Pollution Control Agency; based on work by Schupp (MDNR) and Wilson (MPCA), 1992 and Schupp (MDNR) unpublished data.



#### Why are two-story lakes 15 µg/L?



Source "Minnesota Lake Water Quality Assessment Report: Developing Nutrient Criteria", Third Edition, September 2005, Minnesota Pollution Control Agency; based on work by Schupp (MDNR) and Wilson (MPCA), 1992 and Schupp (MDNR) unpublished data.

#### Deep seepage lakes protected

Long residence time

hannal handle

- Sensitive to P inputs
- Difficult to clean up once polluted



# Phosphorus trends using lake bottom sediment core data

ALALAN ALALALA

**Summer Mean Phosphorus** 



Source: Paul Garrison



- Guidance in Wisconsin Consolidated Assessment and Listing Methodology (WisCALM)
- Data may be contributed by the public (period just ended for 2014 cycle).
- Data collected by Citizen Lake Monitors and entered into SWIMS are automatically used in assessments

http://dnr.wi.gov/topic/surfacewater/assessments.html

### Data Requirements

- 6 samples collected over a minimum of two years
- June 1 September 15

AA AAAA AAAAAAAA

- Surface grab or integrated samples from top 2 m
- Chemical analysis by state-certified laboratory

#### **Confidence Intervals**

MANALA ALAGUAGE



#### **Confidence Intervals**

handed heards





#### 60 0 50 6 8 40 TP (ug/L) 0 30 0 0 20 Clearly Clearly May May 10 Meets Meet Exceed Exceeds 0

### Site-specific Criteria

- Code "mentions" process for developing sitespecific criterion
  - Must have scientific rationale
  - Must be adopted on a case-by-case basis by administrative rule
  - Must be approved by EPA

AA AAAA AAAAAAAA

- Could be more or less restrictive than "default" criteria
- Chlorophyll a concentrations can be used as "biological confirmation" of a phosphorus impairment.



### Site-specific Criteria Examples

- Preventing phosphorus increases in oligotrophic lakes
- Naturally high phosphorus concentrations in some lakes
- Short residence time in some reservoirs may allow for higher criteria

#### Site Specific Criteria

alsought herede



## Site-Specific Criteria

Marchel Ardenaling





and an and he had a fer





#### Why do it?

- Phosphorus standards require reductions in P loading from permitted facilities.
- In some cases, it may be less expensive to reduce nonpoint sources of P than to upgrade wastewater treatment systems.



http://dnr.wi.gov/topic/surfacewater/adaptivemanagement.html

#### Adaptive Management

#### Which facilities are eligible?

- The receiving water is exceeding the applicable P criteria.
- Filtration or equivalent technology would be required to meet the proposed phosphorus limit.
- Nonpoint sources contribute at least 50% of the total phosphorus entering the receiving water.

http://dnr.wi.gov/topic/surfacewater/ adaptivemanagement.html





#### Adaptive Management

#### Roles of citizens

- Monitor phosphorus concentrations to document water quality problems.
- Encourage your water utility board to consider the option.
- Monitor phosphorus concentrations to document water quality improvements.



http://dnr.wi.gov/topic/surfacewater/adaptivemanagement.html





| DNR Webview | NHI Portal | Managed Lands | Data Resource Center | Surface Water Resource Guide | Comments | WTM Coordinate: X= 649081



What about these? TP:CHL a relationships in WI lakes





#### What about these?

Data from Matt Diebel

## FAL and Recreation Thresholds

|                  | Shallow               |                     | Deep          |                       |                     |           |                         |
|------------------|-----------------------|---------------------|---------------|-----------------------|---------------------|-----------|-------------------------|
|                  | Headwater<br>Drainage | Lowland<br>Drainage | Seepage       | Headwater<br>Drainage | Lowland<br>Drainage | Seepage   | Two<br>Story<br>Fishery |
| TOTAL PHOSPHORUS |                       |                     |               |                       |                     |           |                         |
| REC              | ≥ 40 ug/l             | ≥ 40 ug/l           | ≥ 40 ug/l     | ≥ 30 ug/l             | ≥ 30 ug/l           | ≥ 20 ug/l | ≥ 15 ug/l               |
| FAL              | ≥ 100 ug/l            | ≥ 100<br>ug/l       | ≥ 100<br>ug/l | <del>≥ 60 ug/l</del>  | ≥ 60 ug/l           | ≥ 60 ug/l | ≥ 15 ug/l               |
| CHLOR            | OPHYLL A              |                     |               |                       |                     |           |                         |
| REC*             | ≥ 25 ug/l             | ≥ 25 ug/l           | ≥ 17 ug/l     | ≥ 14 ug/l             | ≥ 12 ug/l           | ≥ 10 ug/l | ≥ 6 ug/l                |
| FAL              | ≥ 60 ug/l             | ≥ 60 ug/l           | ≥ 60 ug/l     | ≥ 27 ug/l             | ≥ 27 ug/l           | ≥ 27 ug/l | ≥ 10 ug/l               |

\*Chl a Recreation Thresholds should only be used as loose guidance.



## What data do we use to determine whether TP criteria are exceeded?

|                      | Minimum data requirements                                    |
|----------------------|--------------------------------------------------------------|
| Years                | Last 5 yrs prioritized (can go back 10 yrs)                  |
| Stations             | Deep hole stations<br>(additional stations may be specified) |
| Season               | June 1-Sep 15                                                |
| Timing               | 1 sample/mo., separated by 15 days                           |
| Frequency            | 3 samples for each of 2 yrs                                  |
| Exceedance<br>→ Flag | 2 yrs exceed<br>(or majority of yrs)                         |



Phosphorus Assessment Method for Lakes and Reservoirs

- Current Method (2012 WisCALM)
  - TP criteria in <u>Sec. NR 102.06(4) Wis. Adm.</u> <u>Code</u>
  - Five year assessment period (Jun 1- Sep 15)
  - Minimum of 3 samples in each of two years
  - Deep Hole station, or representative site (multiple stations can be averaged)
  - Two annual average values must exceed
  - Biological impairment must be observed to list as an impaired water

#### Ecoregions



Total Phosphorus ( $\mu g/L$ )





#### Addressing the Cause – Reducing Nutrients in the Watershed

- Impaired waters
  303 (d)
- TMDLs
- Point and nonpoint source reduction
- Grants

The WDNR is actively developing several large-scale basin-wide TMDLs – many of these are in basins with chronic severe algal blooms and measured toxins



#### Proposed 2012 List Updates

- 32 new water listings
  - 20 streams and lakes (total phosphorus)
  - 6 lakes (mercury in fish tissue)
  - 5 beaches (E. coli)

ALAA ALAA ALAA

- 1 stream (copper and zinc)
- 25 water delistings
  - 21 beaches (E. coli)
  - 3 streams (degraded habitat)
  - 1 lake (aquatic toxicity)

#### Top Five Pollutants on 2012 Impaired Waters List

also while he had a los

