Secondary spread of invasive aquatic plants depends on survival time during air exposure

Susan Knight¹
Lindsey Bruckerhoff²
John Havel²

i2 Wordy title?

Nice pic of Susan! itsguest, 2/11/2013

Invasive aquatic plants are widespread and damaging to lakes

Slide 2

made pics a bit bigger since you have the space itsguest, 2/11/2013 i3

Two invasive aquatic plants are prevalent in Wisconsin

Eurasian water-milfoil (EWM)

Curlyleaf pondweed (CLP)

Wisconsin DNR SWIMS data for 2010, maps courtesy of A. Latzka

Slide 3

I am happy to see better distribution maps! Thank you Latzka! itsguest, 2/11/2013 i4

Some boats carry hitchhikers.

Rothlisberger et al. 2010 Fisheries 35: 121

Aquatic plants (Johnstone et al. 1985)

Zebra mussels (Johnson et al. 2001)

Zooplankton (Havel and Stelzleni-Schwent 2000)

Snails and other invertebrates (Rothlisberger et al. 2010)

I increased the contrast in the plot so it can be seen a little better, although still a little blurred itsguest, 2/11/2013

Factors controlling secondary spread

Most boaters visit multiple lakes.

Summer 2011 Wisconsin data B. Beardmore, pers. com.

Boats are out of water for short periods.

Summer 2011 Wisconsin data B. Beardmore, pers. com.

Factors Controlling Secondary Spread

Field experiments at UW Trout Lake Station

9 experiments during summer, 2011 & 2012

Strict procedures for containment

During each experiment:

Fresh collection

Isolation

Cut stems to 20 cm

Measure apical tip length

Dry to different time endpoints (n=10 ea)

Rehydrate and grow 1-2 weeks

Re-measure apical tip length

"Alive" = significant positive growth

What do you mean by isolation? Maybe say sorting or leave out? itsguest, 2/11/2013 i6

Weather for drying was mild and humid

Temperature during rehydration depended on our method.

CLP stems exhibited positive growth up to 18hr of drying.

EWM stems exhibited positive growth up to 24hr of exposure.

Coiling experiments

Coiled EWM exhibited growth up to 3 days of air exposure.

What life history stages can be transported?

Eurasian watermilfoil

Curlyleaf pondweed

CLP turion experiment

After air drying 2 weeks, 10% of turions sprouted (vs. 50% in control).

Conclusions

- Under mesic summer conditions, single stems of EWM and CLP can survive about 1 day out of water.
- Coiling plants extends the survival time of EWM to 3 days.
- Many boaters visit multiple lakes during these time intervals.
- The dormant turions of CLP can likely survive much longer periods out of water and are produced at a time when boating activity is high.

Acknowledgments

FundingWisconsin DNR

Technical assistance
Coauthors
Trout Lake Station
students & staff

Boater dataBen Beardmore

seknight@wisc.edu