What weevils want: Managing your shoreland for biological control of Eurasian watermilfoil

University of Wisconsin-Stevens Point Amy Thorstenson, Graduate Student Dr. Ronald Crunkilton Dr. Michael Bozek Nancy Turyk

- Shoreland habitat
 –You have the control
 - –You can change it

Eurasian watermilfoil (*Myriophyllum spicatum*) Eurasian watermilfoil (*Myriophyllum spicatum*)

- Control methods
 - Chemical control
 - Mechanical harvesting
- Temporary relief
- Drawbacks and concerns

Eurasian watermilfoil (*Myriophyllum spicatum*)

- Biological control
 - Potential long-term, natural solution
 - Milfoil weevil (Euhrychiopsis lecontei)
 - Native to U.S.
 - Genus-specific feeder
 - Develops a feeding preference for Eurasian watermilfoil

Milfoil Weevil (Eurychiopsis lecontei)

- Eggs laid on growing tips
- Larvae hatch, mines stem, damages plant the most
- **Pupae** develop within a pupal chamber inside stem
- Adults feed on leaves, lay eggs
 - − Fall (Sep Oct) \rightarrow fly to shore
 - Winter \rightarrow hibernate at the soil/duff interface
 - Spring (Apr May) \rightarrow fly back to lake

Milfoil Weevil (Eurychiopsis lecontei)

- Shoreland habitat critical link in lifecycle
- Adequate shoreland habitat is vital

OBJECTIVE

To find out what shoreline habitat features are there: 1) where weevils hibernate vs. 2) where they do not

Thomas Lake, Portage County, WI

- 32-acre glacial lake
- Natural shoreline buffers
 - 12 residences
 - low disturbance
- Natural weevil population (0.03-0.34 N/stem)

Springville Pond, Portage County, WI

- 18-acre impoundment of the Little Plover River
 Study area = Eastern end
- Natural and disturbed shoreline buffers
- Natural weevil population (0.06-4.43 N/stem)

Shoreline surveys

Weevils

 a) Presence/absence
 b) Abundance

 Shoreline condition

Weevils

- Sampled in Nov. 2009
- Evenly-spaced transects
 - 27 on Thomas Lake
 - 21 on Springville Pond
- All transects sampled at 4m and 6m from water
- Three randomly chosen transects were also sampled at 10m from water

Weevils

- Sample point = 1 m diam
- Collected soil/duff samples
 - 4 samples per site
 - Composite samples
 - Sample size = 0.05 m^2
 - Soil depth = 5 cm

Tullgren Funnels

- Distance from water
- Height above water
- Habitat type
- Presence of milfoil fragments at shoreline
- Duff layer depth
- Duff composition

- Habitat type
 - 1. Tamarack/Black Spruce
 - 2. Wetland Alder
 - 3. Wetland non-forested
 - 4. Forested conifer dom.
 - 5. Forested deciduous
 - 6. Forested mixed
 - 7. Grass/woody mix
 - 8. Grass/forbs
 9. Low disturbance
 10.Mod disturbance
 11.High disturbance

- Duff composition (% cover)
 - Woody
 - Deciduous tree leaves
 - Conifer needles
 - Grasses
 - Forbs
 - Rock
 - Bare soil

- Soil/duff samples analyses
 - Composite samples
 - % Moisture
 - % Organic matter
 - Soil texture

- Pearson correlation
- Logistic regression
- Discriminant analysis

Thomas

of Weevils • 0 • 1 • 3

8

00

00

00

0

13 sites = weevils present 40 sites = weevils absent (15 weevils total)

Springville

17 sites = weevils present 28 sites = weevils absent (28 weevils total)

8 9 3 8

Habitat Type

Springville Pond

O Included 9"highly disturbed" sites

Mowed lawns, beaches, landscaping

	Weevils Present
Disturbed sites	11% of sites (1 of 9)*
"Natural" sites	44% of sites (16 of 36)

Habitat Type

Springville Pond

96% of the weevils found were at "natural sites" This corroborates existing research

Pearson Correlations

Springville Pond

- Correlated with Weevil Quantity
 - **Distance from Water** (R = -0.30, p = 0.04)
 - **Duff Depth** (R = 0.42, p = 0.00)

Weevil presence/absence

Springville Pond

- Logistic Regression
 - \circ **Distance from Water** (p = 0.05)
 - **Duff Depth** (p = 0.02)
 - Multiple Logistic Regression (model p = 0.01)
 - **Distance from Water** (p = 0.01)
 - **Duff Depth** (p = 0.06)

Pearson Correlations

Thomas Lake

- Correlated with Weevil Quantity
 - **Distance from Water** (R = -0.33, p = 0.01)
 - % Leaves (R = 0.28, p = 0.04)

Weevil presence/absence

Thomas Lake

- Logistic Regression
 - \circ **Distance from Water** (p = 0.03)
 - **% Leaves** (p = 0.04)
 - Multiple Logistic Regression (model p = 0.00)
 - Distance from Water (p = 0.02)
 - **Ht above Water** (p = 0.02)

Discriminant Analyses

• Discriminates between two groups based on multiple available measurements

Thomas Lake

Canonical Function	Variables Included	Structure Coefficient	Correct Classification Rate
BEST	Dist From Shore Ht Above Water	0.856 -0.092	75%

So what did our data tell us?

DISTANCE

Weevils decreased with distance

- Near shore habitat is most important, although weevils were recorded as far as 27 ft from water
 - WI law requires shoreland buffers of 35 ft
 - May provide adequate support
 - Newman et al. 2001 documented weevils @ 65 ft

35 ft buffer is good, but more is better!

HEIGHT

Weevils increased with height

- Newman et al 2001
 = threshold @ 15% soil moisture
- Buffers in low, boggy areas may need to be extended into uplands

Samples from a cattail marsh = 0 weevils

DUFF COMPOSITION

Weevils may increase with leaves

- Colinear relationship between Leaves & Distance
- Requires more research
- Newman et al. 2001: shoreline study on lake surrounded by prairie

Samples from upland grassy shoreline = 4 weevils

DUFF DEPTH

Weevils may increase with duff depth

- Duff layer depth was marginally significant
- Corroborates past research
 - Jester et al 2000:
 - Positive correlation between weevils and "natural" shoreland
 - "Natural" sites offer what advantage?

DUFF DEPTH

• Springville Pond:

96% of weevils found = natural/low disturbance sites

- Natural/low disturbance
 - = 3.3 cm average duff
- Med/high disturbance= 1.7 cm average duff

Unraked, unmowed shoreland buffers provide "good duff".

Recommendations

- Think holistically
 - Think big
 - Think long-term

Summary in a nutshell

- Weevils want:
 - high and dry habitat
 - close to shore
 - with deep duff

Acknowledgements

Funding

DNR Aquatic Invasive Species Grant Program UWSP College of Natural Resources

Additional Committee Members Dr. Robert Freckmann, UWSP Patrick Sorge, WI DNR

Field/Lab Assistance

Charles Boettcher James Brodzeller Benjamin Balika Nathan Thomas

Photo Credits Paul Skawinski Adam Skadsen UWSP Center for Watershed Science & Education

HEIGHT

Weevils increased with height

• Results on McDill Pond = ht threshold @ 50 cm

