Wisconsin's Lake Monitoring

- Citizen Lake Monitoring Network (Self-Help)
- WDNR Baseline/Long Term Trend Monitoring
- Satellite (Lakesat.org)
- Other (grants, research, special studies)

Metrics to assess lake ecosystem health

- Water Quality / Trophic Status (TSI)
 - Water clarity, algal growth, nutrients
- Habitat Quality /Aquatic Plants (FQI, AMCI)
 - Plant species richness, maximum rooting depth, frequency of occurrence
 - Shoreland disturbance, littoral habitat index
- Fish Community attributes (IBI, etc.)
 - Game fish growth, size-structure, relative abundance, & recruitment

Water Quality Monitoring

- Secchi disk transparency
- In situ profiles (DO, temp, pH, conductivity)
- Chl a and Total P
- Water Chemistry (other nutrients, anions, cations, ANC, DOC)
- Color and turbidity

http://dnr.wi.gov/lakes/CLMN/reportsanddata

🕘 🕤 👻 🖉 http:	://prodoasjav	a.dnr.wi.(gov/swims/public/re	porting.do?t	ype=10	&action=po	st&stationNo=4	43146&yea	r1=2010&format=htr	nl		✓ + ×	• 9
File Edit View Fav	vorites Too	ls Help											🔁 •
🚖 🍄 🌈 Lake Wat	ter Quality 20	10 Annua	l Report									🏠 🔻 🔝 🐇 🖶 Pa	ge 🕶 🍈 Tools 👻
						Lal	ke Water	Qualit	ty 2010 Ann	ual Repo	rt		^
Tomahawk Lake Oneida County Waterbody Numb	e ber: 1542	700								Lake Type DNR Regio GEO Regio	: DRAINAC on: NO on:NE	θE	
						Site Na	me					Storet #	
I omahawk Lake	e - Deep H	lole										443146	
Date	SD (ft)	SD (m)	Hit Bottom	CHL	TP	TSI (SD)	TSI (CHL)	TSI (TP)	Lake Level	Clarity	Color	Perception	
06/03/2010 07/03/2010 07/08/2010 08/04/2010 08/04/2010	23.9 20 20 20 16.5	7.3 6.1 6.1 6.1 5	NO NO NO NO	.48 1.7 1.95	12 11 12	31 34 34 34 37	29 39 40	47 47 47	NORMAL		BLUE	1-Beautiful, could not be nicer	
07/03 Depth T	3/2010 emp.	D.O.	Depth	08/04/20 Tem	010 p.	D.O.							
FEET DEG 1 71.6	REESF		FEET1	DEGRE	ESF								
	Dat	e							Co	llector Com	nments		
07/03/2010				Beau	iful da	aysun	ny and 80's	;					
													~
000												S Local intrapet	A 1009/ -

Ground-truthed by hundreds of volunteers DNR Science Services generates annual estimates for >3200 lakes

Long Term Water Quality Trends – Lake Minocqua, Oneida Co.

Long Term Water Quality Trends – Rock Lake, Jefferson Co

Lake Assessment Framework

Step 1. Compare monitoring results to expected values by lake natural community

Flag lakes that exceed a defined threshold

Step 2. Conduct additional monitoring on flagged lakes

 Prioritize based upon how far below the given threshold or number of metrics that are exceeded

Step 3. Determine use attainment and set management goals

- Reference (lake protection goals, ORW candidates)
- High or low attainment (lake improvement goals)
- Impaired (lake rehabilitation goals, candidates for 303(d) list)

Wisconsin Lake Classification

Physical Characteristics

LANDSCAPE POSITION

LAKE DEPTH MATTERS

Temperature

Deep Lakes Stratify

DEEP LAKE

SHALLOW LAKE

 Shallow Lakes
 Continuous Nutrient Recycling

Box plots: Shallow lowland drainage lakes in Southern Wisconsin

2003-2005 (mean) Eagle Lake TSI values (summer)

But is that good or bad?

- Some lakes are naturally eutrophic
- Expectations are different for different landscapes and populations, as well as lake types and ecoregions
- Need to compare to standards or thresholds

Setting assessment thresholds

Human disturbance gradient (e.g. % ag or developed lakeshore)

Attainment Status	Condition	Management Strategy Recommendation
Attaining	Excellent	 Identify water body as a <i>candidate</i> for Outstanding or Exceptional Resource Water (O/ERW) status based upon Tier 1 monitoring. Review other O/ERW decision factors to determine if any are applicable. Conduct Tier 2 monitoring to confirm excellent water quality if O/ERW potential is corroborated with other decision factors.
Attaining	Good	 Maintain or enhance condition through use of Best Management Practices, lake planning & protection grants, and other similar programs where feasible. Encourage involvement of property owners and interested parties in volunteer monitoring efforts (i.e., CLMN or WAV program).
Attaining	Fair	 Consider for improvement and restoration through the use of lake planning & protection grants, river protection grants, and other similar programs where feasible. Conduct Tier 2 monitoring to determine to confirm assessment status. Conduct periodic Tier 1 monitoring to determine if there is a trend of declining water quality. Encourage involvement of property owners and interested parties in volunteer monitoring efforts (i.e., CLMN or WAV program).
Not Attaining	Poor	 Screen for applicability of "modified" use designation through the Use Attainability Analysis (UAA) process. Include on 303(d) list if UAA does not support a "modified" use designation.

Natural Lake "Communities"

Natural Community	Stratification Status	Hydrology
Lakes less than 10 acres		
Small	Variable	Any Hydrology
Lakes 10 acres or greater		
Shallow Seepage	Mixed	Seepage
Shallow Headwater	Mixed	Headwater Drainage
Shallow Lowland	Mixed	Lowland Drainage
Deep Seepage	Stratified	Seepage
Deep Headwater	Stratified	Headwater Drainage
Deep Lowland	Stratified	Lowland Drainage

Other Classifications (any size)						
Spring Ponds	Variable	Spring Hydrology				
Two-Story Lakes	Stratified	Any hydrology				
Impounded Flowing Waters	Variable	Headwater or Lowland Drainage				

Assessment Methodology

Ex: Shallow, Lowland Drainage Lakes

1. General Condition Assessment

Excellent/Good Thresholds – Sediment Cores

Fair/Poor Threshold:

Deep Lakes: Excessive algal growth (hypereutrophic) Shallow Lakes: Flip from plant dominated to algal dominated

Paleolimnology

- Indicator of some previous ecological state
- Pre-settlement
- Undeveloped lakes
- Minimally impacted lakes
- Top/bottom (Tier 1) or full core (Tier II)

Phosphorus trends using lake bottom sediment core data

Summer Mean Phosphorus

Source: Paul Garrison

Taken from (Moss et al.

Hysteresis in the response of charophyte vegetation in the shallow Lake Veluwe to increase and subsequent decrease of the phosphorus concentration. Red dots represent years of the forward switch in the late 1960s and early 1970s. Black dots show the effect of gradual reduction of the nutrient loading leading eventually to the backward switch in the 1990s.

Current TSI Thresholds By Natural Lake Community

Condition Level		Shallow		Deep				
	Headwater	Lowland	Seepage	Headwater	Lowland	Seepage	Two-Story	
Excellent	< 45	< 49	< 39	< 47	< 46	< 44	< 44	
Good	45 – 57	49 – 59	39 – 54	47 – 54	46 – 53	44 – 52	44 – 47	
Fair	58 – 70	60 – 70	55 – 70	55 – 62	54 – 62	53 – 62	48 – 52	
Poor	<u>></u> 71	<u>></u> 71	<u>></u> 71	<u>></u> 63	<u>></u> 63	<u>></u> 63	<u>></u> 53	

How are Wisconsin lakes doing?

Figure 16. Trophic State of Assessed Wisconsin Lakes, 2010

Table 37. Summary of General Condition of TSI Assessed Lakes, 2010

All Lakes Assessed by 2010 TSI Methodology	Number Lakes	Percent (# Lakes)	Lake Acres	Percent (# Acres)
Excellent	604	14%	129,789	19%
Good	1762	41%	231,677	33%
Fair	680	16%	264,128	38%
Poor	127	3%	35,825	5%
No Condition Rating*	1074	25%	32,360	5%
Total TSI Assessed Lakes	4247	100%	693,778.57	100%

"Either no natural community assigned or small lake

http://dnr.wi.gov/org/water/condition/2010_IR/

Figure 21. Changes in lake clarity by lake classification, based on satellite data from 1980-2008

Good.

Eccelioni

40%

20%

0%

n=154

1980 1990 1998 2004 2007 2008

Assessment Methodology

Ex: Shallow, Lowland Drainage Lakes

1. General Condition Assessment

Tier II Monitoring

- Chlorophyll a and Total P (if not collected)
- Dissolved oxygen profiles
- Paleo core
- Plankton identification
- Documentation of algae blooms, toxins

What data do we use to determine whether thresholds are exceeded?

	TP	Chl a			
Years	Last 5 yrs (10 yrs shown for context)				
Stations	Deep hole stations (additional stations may be specified)				
Season	June 1-Sep 15	July 15-Sep 15			
Timing	1 sample/mo., separa	ted by 15 days			
Frequency	3 samples for each of 2 yrs	2 samples for each of 3 yrs			
Exceedance → Flag	2 yrs exceed (or majority of yrs)	3 yrs exceed			

Setting Impairment Thresholds

Chapter NR 102 - P Criteria

- Rivers 100 ug/l (46 listed)
- Streams 75 ug/l
- Lakes and Reservoirs 15 40 ug/l
- Lake Michigan 7 ug/l
- Lake Superior 5 ug/l
- No ephemeral streams, wetlands, LAL waters

Specific Lake Criteria

- 2-story lakes 15 ug/l
- Stratified drainage lakes 30 ug/l
- Stratified seepage lakes 20 ug/l
- Non-stratified lakes 40 ug/l
- Stratified reservoirs 30 ug/l
- Non-stratified reservoirs 40 ug/l

Basis for Lake Criteria

- Minimize risk of nuisance algal blooms -
 - 5% chance of 20 ug/l chl. a bloom
 - 1% chance of 30 ug/l chl. a bloom
- Protect sport fisheries
- Prevent shift in shallow lakes from macrophytes to algal domination
- Maintain dissolved oxygen in hypolimnion of 2-story lakes
- Protect and provide margin of safety for deep seepage lakes

FAL and Recreation Thresholds

		Shallow		Deep			
	Headwater Drainage	Lowland Drainage	Seepage	Headwater Drainage	Lowland Drainage	Seepage	Two Story Fishery
TOTAL	PHOSPHOR	US					
REC	≥ 40 ug/l	≥ 40 ug/l	≥ 40 ug/l	≥ 30 ug/l	≥ 30 ug/l	≥ 20 ug/l	≥ 15 ug/l
FAL	≥ 100 ug/l	≥ 100 ug/l	≥ 100 ug/l	≥ 60 ug/l	≥ 60 ug/l	≥ 60 ug/l	≥ 15 ug/l
CHLOR	OPHYLL A						
REC*	≥ 25 ug/l	≥ 25 ug/l	≥ 17 ug/l	≥ 14 ug/l	≥ 12 ug/l	≥ 10 ug/l	≥ 6 ug/l
FAL	≥ 60 ug/l	≥ 60 ug/l	≥ 60 ug/l	≥ 27 ug/l	≥ 27 ug/l	≥ 27 ug/l	≥ 10 ug/l

*Chl a Recreation Thresholds should only be used as loose guidance.

Assessment Methodology

Ex: Shallow, Lowland Drainage Lakes

1. General Condition Assessment

Aquatic Plants

Species lists, Floristic Quality Index (FQI)

Transect methods – targeted, site specific

Point-intercept surveys – lakewide, systematic – species information, as well as structural information

Protocol available at:

http://wiatri.net/ecoatlas/ReportFiles/Reports2/1757AquaticPlantReport.pdf http://www.uwsp.edu/cnr/uwexlakes/ecology/APM/Appendix-B.pdf

Baseline sampling of aquatic plants Goals and Applications

1) In-lake ecology and	
management -Snapshot of one lake today and over time	 -Summary statistics on plant community (Species list, frequency, max depth) -Species Distributions (Geographic info) -General ecological questions (species-depth relationship, change in maximum depth from year to year) -Assess major management actions

2) Regional and state-wide	
ecology and management -Comparisons among many lakes today and over time -Provides CONTEXT for assessing individual lakes	 -Relationship between plant communities and: Lake type and region Land use (watershed and lakeshore) Invasive species introductions Climate -General ecological questions (species-depth relationship - how does occurrence of various species relate to depth and vary with water clarity statewide?)

Data Collection

- Point-intercept method (Hauxwell et al., 2010)
- Species list and distributions for each lake
- Density rating for each species (1,2,3)

Rating	Coverage	Description
1	Minister of the second	Only few plants. There are not enough plants to entirely cover the length of the rake head in a single layer.
2	Martin Martin	There are enough plants to cover the length of the rake head in a single layer, but not enough to fully cover the tines.
3	No.	The rake is completely covered and tines are not visible.

In-lake examples: Summary statistics

Enterprise Lake, Langlade County Size - 200 ha; Max depth - 8.2 m

Summary Statistics				
Total lake points	563			
Number of points with plants	178			
Maximum depth of plants (m)	4.1			
Littoral area (% of lake)	32			
Mean # species/point	1.7			
Species Richness	27			
Simpson's Diversity Index	0.87			

Species	Frequency of occurrence (%)	Species	Frequency of occurrence (%)
E. canadensis	48.1	M. tenellum	1.9
<i>Nitella</i> spp.	26.4	Chara spp.	1.9
V. americana	14.3	Isoetes spp.	1.9
C. demersum	12.0	P. amplifolius	1.6
N. flexilus	11.6	M. beckii	1.6
P. pusillus	11.2	E. acicularis	1.2
N. gracillima	8.1	N. odorata	1.2
P. richardsonii	4.7	P. strictifolius	1.2
S. fluctuans	4.7	E. palustris	0.8
P. robbinsii	3.9	M. heterophyllum	0.8
U. purpurea	3.9	N. variegata	0.4
M. spicatum	3.5	P. crispus	0.4
P. spirillus	3.1		
B. schreberi	2.3		

Distribution of Eurasian Watermilfoil

Species of Special Concern

Aquatic Macrophyte Community Index (AMCI) (Nichols 2000)

- A measure of aquatic plant community health combining:
 - maximum depth of plant growth
 - area coverage of plants
 - species richness and diversity
 - relative area covered by
 - submersed plant species
 - sensitive plant species
 - exotic plant species

Aquatic Macrophyte Community Index (AMCI)

Aquatic Macrophyte Community Index

Plants are a bit more complicated

Aquatic Plant Community Index (AMCI) (Nichols 2000)

- Max Depth of Plant Growth
 - Update metric to 95% MDPG
 - Negatively related to phosphorus
- Relative % Submersed Species
 - Update to frequency of floating leaved plants or floating leaved plus emergents
 - Negatively related to urban development on the lakeshore
- Relative % Exotic Species
 - Update to relative frequency of tolerant plants, including coontail, sago, stargrass, EWM and CLP
 - Positively related to watershed agricultural development
- Relative % Sensitive Species
 - Update list of sensitive species based on coefficients of conservatism 8-10

Floating-leaf Plants

Tolerant Plants

Shoreland Assessments

- Riparian Habitat
 - Vegetation cover
 - Shoreline and bank
 - Trees and shrubs
- Littoral Habitat
 - Bottom substrate
 - Aquatic plants
 - Fish habitat
- Human Influences
 - Docks, piers, seawalls
 - Buildings, lawns, driveways

- Woodford et al and Center for Limnology Biocomplexity project
- EPA National Lake Assessment first cut
- Shoreland inventories
- Aerial photos
- Littoral habitat indices
- Critical Habitat Designations

''''

Multi-Dimensional Littoral Zone Habitat Fingerprints (Schmidt and Bozek 2009)

Depth, Substrate, Macrophytes, and Coarse Woody Structure

Categories of shoreline vegetation around Jacqueline Lake [40 acre soft water bog lake] – Portage County lakes study

24% = black spruce (*Picea mariana*) and tamarack (*Larix laricina*) wetland-light blue

11.3% = vegetated shoreline-dark green

65% is considered to be disturbed:

- 9.8% = low disturbance developed area-yellow
- 21.3% = moderately disturbedorange
- 4.1% = highly disturbed development-red

Cover 1 - Tamarack/Black Spruce Cover 2 - Alder Shoreline Cover 3 - Narrow Wetland Shoreline Cover 5 - Grasses/Shrubs Cover 5 - Grasses/Shrubs Cover 5 - Grasses/Shrubs Cover 6 - Low Disturbance Cover 8 - High Disturbance

National Lakes Assessment: Sampling Approach

Shoreland Habitat Assessment

- 55 individual habitat metrics captured at each site (550/lake).
- Metrics reduced to four indices of habitat quality:
 - Human Disturbance on Lakeshores
 - Riparian Zone Integrity
 - Littoral Zone Integrity
 - Complexity of Riparian/Littoral Interface
- Disturbance index scores assessed against nationally consistent thresholds
- Riparian/littoral indices assessed against regionally-explicit reference conditions (*corrects for expected regional differences*)

Condition of the Nation's Lakes: Habitat

*) NLA Primary indicator is Lakeshore Habitat

Condition of the Nation's Lakes: Habitat

Box plots: All lakes in a given natural community and/or ecoregion

Lake Condition Metrics (Water Quality, Plants, Shorelands, etc)

Protect Manage

Restore

Management Strategy

Wisconsin is a state rich in lakes. Its approximately 15,000 lakes range in size from small one-and two-acre spring ponds to 137,708-acre Lake Winnebago. Due to variations in chemical and biological composition, physical characteristics, and diversity of origin, each lake should be considered unique.

Of the documented lakes in Wisconsin, only about 40 percent have actually been named. The majority of the unnamed lakes are very small, less than 10 acres. Most lakes are in the northern and eastern parts of the state dotting the path of the glaciers. The unglaciated region, or Driftless Area, of southwestern Wisconsin has very few lakes by comparison.

About 3,620 of the state's lakes are larger than 20 acres, constituting more than 93 percent of the surface area of

Wisconsin's inland lakes. The total inland lake surface acreage in the state approaches one million acres.

The depth of Wisconsin's natural inland lakes also varies a great deal, ranging from a few feet to a maximum depth of 236 feet in Green Lake (Big Green) in Green Lake County.

In addition to the inland lakes, portions of Lakes Michigan and Superior lie within Wisconsin's boundaries. These Great Lakes are two of the largest freshwater bodies in the world, and they add nearly 6.5 million acres of water to Wisconsin.

0	SHARE 📕 💺 🖾)
L	akes
L	akes & Maps
F L I	ind A Lake ake Contour Maps nteracuve Map
R	ecreation
E F S	Boating Recreation ishing Swimming
L	ake Health & Monitoring
E C I V V	Blue-Green Algae Climate Change nvasive Species Vater Level Vater Quality
M	lanagement
ACL	Aquatic Plant Management Grants .ake Organizations & Districts
V	olunteers & Success Stories
V V	/olunteer Opportunities Visconsin's Lakes Partnership
L	earn
C	Calendar [Exit DNR]

Common Quest

FIND A LAKE

Find A Lake > Dane County > Lake Wingra

Lake Wingra

336 Acres

Lake Wingra is a 336 acre lake located in Dane County. It has a maximum depth of 21 FEET. Features include public boat landings, parks. Fish in the lake include Musky, Panfish, Largemouth Bass, Northern Pike, Walleye.

- Boat Landings (2)
- Public Parks (2)

Fish

- Panfish (Abundant)
- Musky (Common)
- Largemouth Bass (Common)
- Northern Pike (Present)
- Walleye (Present)

DNR Photo

🐏 WISCONSIN LAKE DATA & MAPS

3 SHARE	: 🔝 😫 🖂)
Lakes	
Lakes &	Maps
Find A L Lake Co Interact	ake ontour Maps iive Map
Recreati	ion
Boating Fishing Swimmi	ing
Lake He	alth & Monitoring
Blue-Gr Climate Invasive Water L Water C	een Algae Change e Species evel Quality
Manage	ment
Aquatic Grants Lake Or	Plant Management
Voluntee	ers & Success Stories
Volunte Wiscons	er Opportunities sin's Lakes Partnership
Learn	
Calenda Commo	ar [Exit DNR] on Questions

FIND A LAKE

Find A Lake > Dane County > Lake Wingra

Lake Wingra

336 Acres

Lake Wingra is a 336 acre lake located in Dane County. It has a maximum depth of 21 FEET. Features include public boat landings, parks. Fish in the lake include Musky, Panfish, Largemouth Bass, Northern Pike, Walleye.

- Boat Landings (2)
- Public Parks (2)

Fish

- Panfish (Abundant)
- Musky (Common)
- Largemouth Bass (Common)
- Northern Pike (Present)
- Walleye (Present)

Local Projects

A to Z Facts

🐏 WISCONSIN LAKE DATA & MAPS

Lakes & M	aps
Find A Lak Lake Con Interactiv	ke tour Maps e Map
Recreation	ı
Boating Fishing Swimming	9
Lake Heal	th & Monitoring
Blue-Gree Climate C Invasive S Water Lev Water Qu	en Algae Change Species Vel ality
Managem	ent
Aquatic Pl Grants Lake Orga	ant Management anizations & Districts
Volunteer	s & Success Stories
Volunteer Wisconsin	Opportunities 's Lakes Partnership
Learn	
Calendar	[Exit DNR]

Contacts

FIND A LAKE

Find A Lake > Dane County > Lake Wingra

Lake Wingra

336 Acres

Lake Health

Excellent / good / fair / poor

A basic graph here

menu of more report options

Overview / Recreation Map Lake Health Plants & Animals Local Projects A to 7 Eacts

wisconsin lake data & maps

L	akes & Maps
Charles and the second	Find A Lake Lake Contour Maps Interactive Map
ł	Recreation
The second second second second	Boating Fishing Swimming
L	ake Health & Monitoring
この うちからのから ちょうちょう	Blue-Green Algae Climate Change Invasive Species Water Level Water Quality
ł	Management
100 MM	Aquatic Plant Management Grants Lake Organizations & Districts
	/olunteers & Success Stories
ALC: NO DE COMPANY	Volunteer Opportunities Wisconsin's Lakes Partnership
L	earn
Contraction of the	Calendar [Exit DNR] Common Questions