Citizen Science \& Wisconsin's Wildlife Response to Climate

Change

 byMike Meyer
Wiscensin Department of Natural Resources

Wisconsin Initiative on Climate Change Impacts: Wildlife Working Group

Michael W. Meyer
Karl J. Martin
Co-Chairs

WICCI Wildlife Working Group Objectives

- Identify potential risks and vulnerabilities pertinent to Wisconsin wildlife
- Summarize existing information on climate change impacts to Wisconsin wildlife
- Identify data and research needed to assess future impacts on Wisconsin wildlife
- Recommend adaptation strategies to wildlife \& conservation managers/policy makers

Research Investigating

Climate Change Impacts on Wisconsin Aquatic Wildlife Resources
Can Citizen Scientists Assist?

Disparity between North and South?

U.S. Drought Monitor
 Midwest

May 5, 2009
Valid 7 a.m. EST

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	85.9	14.1	8.1	1.7	0.0	0.0
Last Week (04/28/2009 map)	85.5	14.5	8.1	1.7	0.0	0.0
3 Months Ago (02/10/2009 map)	83.0	17.0	9.8	3.9	0.0	0.0
Start of Calendar Year (01/06/2009 map)	72.8	27.2	15.3	3.4	0.0	0.0
Start of Water Year (100072008 map)	54.9	45.1	22.7	3.4	0.0	0.0
One Year Ago (050062008 map)	96.9	3.1	0.0	0.0	0.0	0.0

Intensity:

D0 Abnormally DryD1 Drought - Moderate
D2 Drought - Severe

The Drought Monitor focuses on broad-scale conditions.
Local conditions may vary. See accompanying text summary for forecast statements

USDA
 \square

Hatiana Drougat Nispotitn Conta

Released Thursday, May 7, 2009 Author: Laura Edwards, Western Regional Climate Center

Long Lake

Waushara County

Droughts and

 increased evaporation leads to lower lake levels affecting:- Recreation
- Property values
- Ecosystems

Photo:Tim Asplund WDNR

Potential effects of climate change on inland glacial lakes and breeding common loons in Wisconsin

John F. Walker1, Randall J. Hunt1, Kevin P. Kenow2, Michael Meyer3 and Lauren E. Hay4

1. USGS, MFiddleton, WI
2. USGS, LaCrosse, WI
3. WDNR, Rhinelander, WI
4. USGS, Denver CO

FUNDING 2008-2010 - Wisconsin Focus on Energy, Research Grants: Environmental and Economic Research and Development Program Research Program

21st Century Climate Change Projections for Wisconsin

Warming of 6-10 ${ }^{\circ} \mathrm{F}$
Longer growing season
(From Michael Notara, Bracing for Impact Presentation 04 March 09)

Fewer cold surges; More heat waves
Diminishing lake / river ice
Shorter snow season; More frequent freezing rain events
Increase in spring precipitation; Possible decrease during summer

More extreme precipitation events, but not much of a change in annual precipitation

Will changing temperatures and precipitation alter hydrology of northern Wisconsin lakes?

Negatives: Poorer water quality, more nuisance exotics

Historical accounts and current WBBA Atlas show WI common loon breeding distribution has already shifted north

common coon IVap and Data

Wisconsin Loons More Likely Found on Lakes with Good Water Clarity

Trout Lake Watershed, Vilas County, Wisconsin

Explanation

- Well with high-frequency data
Well with discrete data
- Lake with bi-weekly data

O Lake with single water-level target

O Lake with single water-level and flux targets
Δ Stream gage with high-frequency data

The USGS GSFLOW model (Markstrom et al., 2008) will predict watershed surface water hydrology as a function of IPCC Climate Change Model predictions.

and coupled with the MODFLOW ground-water flow model will describe how water volume and solute concentrations delivered to lakes may change. Lake models will then predict how these changes will affect lake trophic status

EXPLANATION
----.- Soil-zone base

Schematic diagram of the GSFLOW model showing ground-water modeling using MODFLOW. The surface- and ground-water processes are linked at the bottom of the soil-zone interface (after Markstrom et al., 2008).

We will describe how predicted changes in Trout Lake watershed hydrology and lake trophic status will affect future loon habitat quality in the face of climate change

Can Citizen Scientists Deliver? A Cost/Benefit Analysis of the Wisconsin Loon Citizen Science Project

Michael W. Meyer
Wisconsin DNR Science Services
Wildlife and Forestry Research
Rhinelander, WI 54501

Risk Assessment Region

Lake chemistry and Hg deposition rates favor elevated MeHg in fish in some northcentral Wisconsin Lakes.

Figure ES-1
Surface Water and pH ≤ 5.5 Figure Ans-1 Andiopagenic Mercury Depositlon

Common Loon Viap and Data

Site/scale

Objective 1) LOON POPULATION ESTIMATE

-Dual Frame
Quadrat Sampling Technique. Haines and Pollock. 1998. Environmental and Ecological Statistics 5,245256.

Map Features

Cells Sampled (90) \& Loon Nests Located (420) 2002-2004

\odot	Loon Nests 2002-2004
	Lakes (>4 hectare)
	2002 Cells
\square	2003 Cells
$\square \square$	2004 Cells
$\square \square$	Study Area Grid
\square	County Boundaries

S

Re-sightings, re-captures, and band recoveries used to calculate adult survival and to examine relationship of survival to gender, region, and mercury exposure

-Survival estimate based on re-observations $=0.91$

(CI=0.88-0.94) No effect of gender, location or Hg exposure on adult loon survival rate (Mitro et al. ms. in review)

Fertility 2002-2004

Proportion nesting

\qquad

Mike Meyer, Doug Killian, Dennis Stockwell WDNR Science Services Rhinelander

What Does a Loon Citizen Scientist Do?

- Collect loon population data necessary to update the Wisconsin Loon Population Model
\square Identify critical loon nesting habitat for conservation and management
\square Assist with loon banding and lake water chemistry projects.

Weekly lake surveys document presence of territorial adults and floaters, nest attempts, and chick survival

How is this accomplished?

- Loon Citizen Scientists will survey lake(s) from May - August, ideally once weekly
- During each survey, the number of adult loons present, the nesting status, and chick survival are recorded
- Once per year, identify returning adults by identifying color leg bands when present
- Assist project staff with night banding efforts in July and early August
- Fill in appropriate data sheets and return to Project Leaders at the end of the season

Adult Survival Rate - Re-observations of >1200 Wisconsin adult loons individually color-marked 1991-2008

Nest Monitoring

Juvenile Survival from banding (week 6) to Year 3 PI Dr. Walter Piper - Resightings of adults color-marked as chicks Cluster of 60 lakes, >300 color-marked chicks 1994-2005

- Minimum survival banding to 3 yrs $=0.58$
- age of first breeding = 5 years

COMMON LOON 2 STAGE DETERMINISTIC PROJECTION MATRIX MODEL

MATLAB version 7, The Mathworks, Natick, MA, USA

$$
A(\lambda)=\left\{\begin{array}{ll}
P_{1} & F_{2} \\
G_{1} & P_{2}
\end{array}\right\}
$$

A $(\lambda)=$ Population Annual Growth Rate
$P_{1}=$ juvenile survival
$P_{2}=a d u l t$ survival
$F_{2}=$ adult fertility
$\mathrm{G}_{1}=$ transition to adulthood

Volunteer Participation

Volunteer Sign up	Returned Forms 2007	Returned Forms 2008	Returned Forms 2009
$2007=21$	17	18	14
$2008=58$		29	17
$2009=19$			9
Total	17	47	40

Volunteer Results

	2008	2009
Volunteers forms received	47	40
Lakes Monitored	50	59
\# weeks surveyed/volunteer	13	14
\# band re-observation forms	25	N/A
\# territorial pair	60	69
\# pair nesting	55	61
\# chicks hatched	46	55
\# fledge	37	38

Random vs. Volunteer Results

	2002	2003	2004	Mean	2008	2009
Nesting Propensity	0.820	0.787	0.830	0.812	0.917	0.884
Hatched/pair	0.541	0.492	0.591	0.541	0.766	0.797
Fledged/pair	0.410	0.426	0.398	0.411	0.560	0.550
Chick Survival	0.758	0.867	0.833	0.819	0.801	0.790

Loon Citizen Scientist Accuracy 2008
 (n=35 lakes)

- Band reobservations - <35\%
- Territorial Pair presence/absence - 100\%
- Proportion Nesting - 85\%
- Nest outcome - 100\%
- Chick hatching - 95\%
- Chick survival - 100\%
- Conclusion - Loon Citizen Scientists accurately identify territorial pair and nest outcome (fecundity); trained staff required to quantify adult re-observation rates (adult survival and juvenile recruitment)

Volunteer Sample Biases

\square Volunteers primarily from lakes with a history of loon use
\square Volunteer lakes larger than randomly selected lakes

- Volunteer lakes more productive (> \% neutral pH) than random sample
- Fecundity rate 2008, 2009 higher than that measured 2002-2004 (random sample)

Cost/Benefit Analysis WDNR LTE's

- Cost of monitoring fecundity weekly at 60 lakes using WDNR LTEs (USEPA study)
- 1520 WDNR LTE hours (salary/FB = \$22,800)
- Weekly surveys, 30 lakes/LTE
- May 1 - August 21 = 18 weeks

180 hours = data entry

- Travel
- Vehicles ($5000 \mathrm{mi}{ }^{*} 0.37 \mathrm{mi}$) $=\$ 1,850$
- Boats/motor/trailers/canoes (gas \& maintenance) - \$1000
- Total = \$25,650

Cost/Benefit Analysis (cont.)

- Cost of monitoring fecundity weekly at 60 lakes using citizen scientists
- 310 WDNR LTE hours (salary/FB = \$4650)
- 100 hours = 5 training workshops

1150 hours season prep - datasheet \& newsletter mailings, maintenance of citizen science contact info/mailing list

- 60 hours = data entry
- Supplies, newsletter, mailings - \$1500
- Travel - \$500
- Total - \$6650
- Net Savings \$19,000

Intangible Citizen Scientist Benefits

- Citizens participate in a State-of-the-Science Common Loon Conservation project
- Contribute data critical to natural resource policy making in northern Wisconsin
- Receive policy education via annual newsletters and spring training Workshops
- Become advocates for sound lake stewardship policies.

The Wisconsin Department of Natural Resources and partners at the US son and the US Geological Survey Upper Midwest Environmental Science Center in La Crosse will begin a research study this summer to investigate whether predicted changes in Northern Wisconsin climate will result in reduced nest habitat
quality of Common Loons. Loons typiquality of Common Loons. Loons typi-
cally select lakes for breeding that have good nesting habitat and relatively clear water. Previous work has shown that loons are less likely to be found on lakes as the secchi disk reading decline.

Proportion of Lakes with Territorial Loons Proporion of Lakes with Territoriai Loons
Present by Water Clarity Category

USGS Hydrologists John Walke and Randy Hunt will model the potential impacts of future climate conditions on lakes within the Trout Lake watershed Vilas County. They will investigate precipitation could lead to changes in lake water quality in the region. WDNR Research Scientist Mike Meyer and USG Research Scientist Kevin Kenow will be heading up crews that will be documen ing loon use of lakes within the water-
shed and at the southern extent of their breeding range-southern and central

Historical accounts and current WBBA Atlas show WI common loon breeding distribution has shifted north

Wisconsin. Specifically, the research crews will be identifying which lake fac ors (such as water clarity) nesting loons are looking for when setting up breedin
territories. They will then assess whether lake models predict these fa ors could change under future climate conditions, potentially reducing the amount of lakes suitable for loons in Wis consin.

The Wisconsin breeding loon
population has shifted north over the pas
100 years, it is possible that reduced lak
water quality is responsible for this
range reduction.. Investigators will ex-
amine whether the water quality of south
ern lakes abandoned by breeding loons

(1): Ginger Gumm / Daniel Poleschook

Home

The Wisconsin Frog and Toad Survey (WFTS) is a citizen-based monit program coordinated by the Wisconsin Department of Natural Resour (WDNR), in cooperation with the U.S. Geological Survey (USGS) and American Amphibian Monitoring Program (NAAMP).

The primary purpose of the WFTS is to determine the status, distribu long-term population trends of Wisconsin's thirteen frog species. The initiated in 1981 in response to known and suspected decines in seve Wisconsin species, particularly northem leopard frogs (Rana pipiens), cricket frogs (Acris crepitans blancharch), pickerel frogs (Rana palustr bullfrogs (Rana catesbeiana). The WFTS began annual statewide sun and is now one of the longest running amphibian monitoring projects America.

WFIS News
Survey Routes Available for 2010
Previous annual summaries available online

Website Sponsors

©c) 2006 Wisconsin Frog and Toad Survey

This site is produced in conjunction with the Wisconsin Aquatic and Terrestrial Resources Inventory and sponsored by the Wisconsin I of Natural Resources and the Beaver Creek Reserve. The information presented on this site is subject to the Wisconsin Department ol Resources' Legal Notices, Desclaimers, and Terms of Use.

Lake Phenology - Biota

