What have we learned from freshwater invasions?

Anthony Ricciardi

Redpath Museum and McGill School of Environment McGill University, Montreal, Canada
tony.ricciardi@mcgill.ca

Ten generalizations regarding aquatic invasions

1. Rates of discovery are increasing worldwide.

Rate of discovery of invaders in aquatic systems

Rates of discovery of invaders in large aquatic systems

Ten generalizations regarding aquatic invasions

2. Many introductions fail to establish sustainable populations.

Barriers to species invasion

Species pool:

Geographic barrier

Physiological barrier

Demographic barrier

Biotic resistance

Invading species:
G

Nonindigenous freshwater fishes introduced to 149 regions worldwide

Ten generalizations regarding aquatic invasions

3. Propagule pressure is the most consistent predictor of establishment success.

Success of introduced salmonids versus propagule pressure

Propagule pressure

Ten generalizations regarding aquatic invasions

4. All aquatic systems are invasible, but some are more invasible than others.

Impounded lakes are invaded more frequently than natural lakes

Johnson et al. (2008)

Effect of land use

 on the proportion of endemic versus exotic fishes at 36 sites in two river basins.Scott \& Helman (2001)

(deforested area + \# buildings/ha + km roads/ha)

Ten generalizations regarding aquatic invasions

5. The impacts of exotic species are context dependent.

Impacts of invasive fishes vary across regions

(Data from 153 invaders)

Total number of regions invaded

Abundance

Environmental variable

Impact

Exotic species abundance

Environmental variables

Ten generalizations regarding aquatic invasions

6. The potential impact of an exotic species is not correlated with its invasiveness.

Invasiveness vs impact of exotic species on native species populations

Impact ranking
Ricciardi \& Cohen (2007)

Invasiveness vs impact of exotic species on native species populations

Impact ranking
Ricciardi \& Cohen (2007)

Invasiveness vs impact of exotic species

Ricciardi \& Cohen (2007)

Ten generalizations regarding aquatic invasions

7. The introduction of an uncontrolled generalist consumer often has cascading effects in aquatic food webs.

Food web of Flathead Lake (Montana, USA)

Food web of Flathead Lake (Montana, USA) after introduction of opossum shrimp

Trophic cascade caused by introduced brown trout

The effect of Peacock Cichlid Cichla ocellaris on the food web of Gatun Lake, Panama

Before introduction
After introduction

Seasonal abundance of malarial mosquitoes near Gatun Lake

Vander Zanden et al. (1999)

Lake trout response to smallmouth bass removal: Changes in proportion of prey in lake trout diet

Ten generalizations regarding aquatic invasions

8. The largest impacts are caused by species introduced to systems where no similar species exist.

Impact of exotic trout on frogs (Rana muscosa) in alpine lakes in California

Knapp et al. (2001)

Impact of Nile perch (Lates niloticus) on Lake Victoria cichlids

Catch of native cichlids vs Nile perch

\square Cichlids
\square Nile perch

Impact of sea lamprey on lake trout in the Great Lakes

Lawrie (1970)

Causes of freshwater fish extinctions in North America

Miller (1989)

High-impact invaders tend to belong to novel taxa

\square High-impact spp

Potomac River

Hudson River

Great Lakes

Proportion of genera that are novel

Colonization of the Great Lakes

 by invaders from the Black Sea

Impacts of inter- vs intra-continental invasions

Ten generalizations regarding aquatic invasions

9. The invasion history of a species is the best predictor of its invasiveness and impact.

Ecosystem impacts of the zebra mussel

European lakes
N. American lakes

Suspended particles
Transparency
Phytoplankton Production
Macrophyte Biomass
Zooplankton Biomass
Benthic Invertebrate Density
Waterfowl Density

$$
\uparrow=\text { increase }, \downarrow=\text { decrease }
$$

Effects of Dreissena on invertebrate communities

(as revealed by meta-analysis)

Ward \& Ricciardi (2007)

Declines in N. American native mussel populations following zebra mussel invasion

\longrightarrow Upper St. Lawrence
$-\nabla$ - Lake Erie

- - - Lake St. Clair
- \diamond - Rideau Canal
$\cdots \cdot \Delta \cdots \cdot$ Hudson River

Years since invasion

Native mussel mortality versus zebra mussel fouling in North America

Ten generalizations regarding aquatic invasions

10. Synergistic effects may result from the interactions of multiple invaders.

Facilitation of alewife invasion by sea lamprey in the Great Lakes

Lawrie (1970); Kitchell \& Crowder (1986)

Facilitation of bullfrog invasion of ponds by nonindigenous fish

Adams et al. (2003)

Bluegill sunfish

Facilitation of exotic plants by zebra mussels

Skubinna et al. (1995); Vanderploeg et al. (2002)

Dreissenid mussel activities forced the James A. Fitzpatrick nuclear reactor at Oswego, N.Y. to shut down 3 times in Fall 2007

Cladophora (filamentous algae)

Recent outbreaks of avian botulism in the Great Lakes

- > 90,000 birds (fish-eating waterfowl) killed since 1999
- Also affects benthic fishes
- Cause: Type-E botulism from dreissenid mussels

Transfer of botulism from dreissenid mussels to fish \& birds in Lake Erie

Conclusions

- All aquatic systems are invasible, given sufficient propagule pressure.
- An invader's impacts are context dependent, but its invasion history may reveal patterns.
- Ecologically-distinct invaders are more likely to disrupt food webs.
- Multiple invaders may interact synergistically.

Acknowledgements

- Natural Sciences and Engineering Research Council (Canada)
- Canadian Aquatic Invasive Species Network

NSERC CRSNG

