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Hydrology, Nutrient Concentrations, and Nutrient
Yields in Nearshore Areas of Four Lakes in Northern

Wisconsin, 1999-2001

By David J. Graczyk', Randall J. Hunt', Steven R. Greb? Cheryl A. Buchwald', and James T. Krohelski’

Abstract

The effects of shoreline development on water qual-
ity and nutrient yields in nearshore areas of four lakes in
northern Wisconsin were investigated from October 1999
through September 2001. The study measured surface
runoff and ground-water flows from paired developed (sites
containing lawn, rooftops, sidewalks, and driveways) and
undeveloped (mature and immature woods) catchments
adjacent to four lakes in northern Wisconsin. Water samples
from surface runoff and ground water were collected and
analyzed for nutrients. Coupled with water volumes, loads
and subsequent yields of selected constituents were com-
puted for developed and undeveloped catchments.

The median runoff from lawn surfaces ranged from
0.0019 to 0.059 inch over the catchment area. Median
surface runoff estimates from the wooded catchments were
an order of magnitude less than those from the lawn catch-
ments. The increased water volumes from the lawn catch-
ments resulted in greater nutrient loads and subsequent
annual nutrient yields from the developed sites.

Soil temperature and soil moisture were measured at
two sites with mixed lawn and wooded areas. At both of
these sites, the area covered with a lawn commonly was
warmer than the wooded area. No consistent differences
in soil moisture were found.

A ground-water model was constructed to simulate
the local flow systems at two of the paired catchments.
Model simulations showed that much of the ground water
delivered to the lake originated from distant areas that did
not contribute runoff directly to the lake.

Surface runoff and ground-water nutrient concentra-
tions from the lawn and wooded catchments did not have
apparent patterns. Some of the median concentrations from
lawns were significantly different (at the 0.05 significance
level) from those at wooded catchments.

Water wells and piezometers were sampled for chemi-
cal analyses three times during the study period. Variability
in the shallow ground-water chemistry over time in the
lawn samples was larger than samples from the wooded
areas and upgradient wells.

Median nutrient yields in surface runoff from lawns
always were greater than those from the wooded catch-
ments. Runoff volumes were the most important factor in
determining whether lawns or wooded catchments contrib-
ute more nutrients to the lake.

The ground-water system had appreciable nutrient
concentrations, and are likely an important pathway for
nutrient transport to the lake. The nitrate plus nitrite nitro-
gen and total phosphorus yields to the ground-water system
from a lawn catchment were approximately 3 to 4 times
greater than those from the wooded catchment. There was
no difference in the yields of dissolved inorganic phospho-
rus to the ground-water system from the lawn and wooded
catchments.

Study results demonstrate that choosing the appropri-
ate landscape position for locating lawns in sloped areas
(specifically, slopes that do not terminate at the lake or
areas with intervening flat or buffer zones between lawn
and lake) can help reduce the adverse effect of lawns on the
shallow ground water and, ultimately, the lake. Additional
information would be needed to extrapolate these results to
a large drainage area of a lake.

Introduction

The shoreline of a lake is the interface between ter-
restrial and aquatic ecosystems. Protection of this riparian
area is important for a variety of reasons including wildlife
habitat, water quality, and scenic views. Waterfront devel-

'U.S. Geological Survey, *Wisconsin Department of Natural Resources
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opment has been rapid in northern Wisconsin in recent
years. For example, lakes 500 to 1,000 acres in size have
9 times the number of homes on them today as they did in
the 1960s (Wisconsin Department of Natural Resources,
written commun., 1996). In addition, because of the
premium price placed on lakeshore frontage, shoreline
areas once thought undevelopable because of steep slopes,
excessive wetness, or small area are now being built upon.
Small seasonal cottages, no longer the norm for lakeshore
dwellings, are being replaced by larger permanent homes.

A primary tool used in the protection of shoreland
areas is shoreland-zoning laws. Wisconsin Administra-
tive Code NR115 covers current shoreland zoning stan-
dards in the State of Wisconsin (Wisconsin Department
of Natural Resources, 2000). The four major aspects of
NR115 include control of development density, creation of
vegetative buffers on public waterways, minimization of
water-resource disturbances, and protection of wetlands.
In addition to the State’s NR115 code, counties may have
additional shoreline-zoning requirements.

Previous studies have estimated the sediment and
nutrient loadings from lake watersheds but few studies
have determined the processes and pathways by which
these constituents are delivered to a lake at a site scale.
For example, few if any studies have determined the effec-
tiveness of buffers or vegetation cutting restrictions on
reducing chemical and sediment loads.

As development activities near lakes have increased,
the movement of detrimental chemical constituents to
lakes and the effects of these constituents on lakes have
become important issues nationally, as well as in Wis-
consin. In order to determine the effects of these constitu-
ents, surface-runoff and ground-water inputs to lakes and
chemical loads they transport from small riparian catch-
ments must be quantified. The U.S. Geological Survey,
in cooperation with the Wisconsin Department of Natural
Resources, conducted a study during 1999-2001 to deter-
mine surface-runoff and ground-water inputs to four lakes
in northern Wisconsin.

Purpose and Scope

This report summarizes concentration data for nutri-
ents, primarily nitrogen and phosphorus species, collected
from 4 small riparian catchments draining to 4 lakes in
northern Wisconsin (fig. 1). In addition, the concentration
data were coupled with surface runoff and ground-water
flows to compute loads and yields of nutrients in 4 catch-
ments. The data-collection period was from November
1999 through September 2001.
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Study Approach

The effects of shoreline development on water and
nutrient loading to lakes were assessed by means of a
paired approach. The comparison focused on four lakes,
three in Vilas County and one in Forest County in northern
Wisconsin (fig 1). The study approach was (1) measure
surface runoff and ground-water flows from developed
catchments (sites containing lawn, rooftops, sidewalks,
and driveways) and undeveloped catchments (mature and
immature woods), (2) collect surface runoff and ground-
water samples from the developed and undeveloped areas
of each site for nutrient analyses, (3) couple water volumes
and concentrations to determine loads and yields, and
(4) compare and contrast concentrations, loads, and yields
from developed and undeveloped land.

The study approach required a range of data-collec-
tion techniques. In order to conceptualize the distribution
of flow to the ground-water and surface-water systems,
measurements of soil temperature were made to assess
times suitable for infiltration and indicate the qualitative
evapotranspiration rate. Soil-moisture profiles were col-
lected to assess the interception of infiltrating water and
the antecedent conditions for the sites. Finally, a large-
scale (~185 mi?) ground-water-flow model was used to put
the local sites into a regional framework and to constrain
estimates of water recharged to the ground-water system.

A reconnaissance was done before the study began to
determine whether surface runoff and ground-water-flow
data could be collected at each site. Data collected from
mini piezometers installed in the littoral zone helped estab-
lish two types of sites—sites where ground water flowed
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Figure 1. Location of study area and data-collection sites, northern Wisconsin.
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to the lake and sites where ground water flowed from the
lake to the local ground-water system. Sites where ground
water flowed to the lake were instrumented with both
ground-water and surface runoff monitors. If the ground-
water flow was away from the lake to the local ground-
water system, then only surface runoff was monitored.
The sites and type of data collected at each site can be
found in table 1.

Table 1. Type of data collected at each study site in northern
Wisconsin

[--, no equipment]

Surface-water data Ground-water data

Lake Lawn  Woods Lawn  Woods
Lower Ninemile X X X X
Butternut X X X X
Kentuck site 1 X -- X --
Kentuck site 2 -- X -- --
Anvil X X -- --

A paired approach was used—that is, areas of devel-
oped land (lawns and impervious areas) and wooded areas
(minimally disturbed land) were monitored. At three of the
lakes, Lower Ninemile, Butternut, and Anvil, these paired
catchments were adjacent to each other on the same prop-
erty. The two catchments at Kentuck Lake were considered
paired even though they are at sites approximately 0.5 mi
from each other. In order to determine variability within
sites, multiple undeveloped and developed catchments
were monitored within each site.

Regional Description

Knowledge of the regional hydrogeological system
is needed in order to understand how the catchments
interacted with the lakes. Geologic data used during this
study consisted of interpretive geologic maps and reports
presented by Attig (1985) for Vilas County and by Simp-
kins and others (1987) for Forest County. These sources
are excerpted briefly here. Glacial deposits of the Langlade
Lobe are present throughout southeastern Vilas, north-
eastern Oneida, and northwestern Forest Counties. These
deposits, known as the Nashville Member of the Copper
Falls Formation, range in thickness from about 40 ft to
over 250 ft and generally overlie mafic metavolcanic rock
(Attig, 1985). The Nashville Member is composed of till
(mixture of gravel and loamy sand), generally deposited
subglacially, and sand and outwash (mixture of sand and
gravel) deposited by meltwater.

Glacial lakes in northern Wisconsin typically were
formed when an ice block broke off the retreating glacier,
was surrounded or buried by outwash, and left a depres-
sion in the landscape, known as a kettle; it is when the ice
melted and filled this kettle that a kettle lake was formed.
Kettle lakes are typified by a high variability of depos-
its found in the vicinity of the lakes. This variability is
a result of the depositional environments ranging from
flowing meltwater streams (sand and gravel) to more calm
backwater areas where fine-grained sediment (silts and
clay) accumulated. Kentuck, Anvil, and Butternut Lakes
probably were formed by melted ice blocks that protruded
above aggrading sand and gravel. As the ice melted, fine-
grained material became interbedded with the coarser sand
and gravel. Simpkins and others (1987) describe surficial
deposits in the vicinity of these lakes as sand and gravel
in areas of hummocky topography. Meltwater streams
deposited poorly to moderately well sorted sand and gravel
on ice that eventually melted to form the hummocky
topography.

The fourth study lake, Lower Ninemile, is substan-
tially different from the kettle lakes; it can be described as
a flowage lake because the origin of Lower Ninemile Lake
is a manmade dam that backs up water. Therefore, inter-
bedded fine-grained material typical of kettle lakes would
not be expected in the vicinity of a flowage lake (John
Attig, Wisconsin Geological and Natural History Survey,
written commun., 2002). Attig (1985) describes the
deposits in the vicinity of Lower Ninemile Lake as col-
lapsed stream sediment. Peat deposits (partially decom-
posed organic matter) are present in small areas that
are low-lying and poorly drained in the Lower Ninemile
Lake vicinity.

Site Descriptions

The data-collection network, drainage area, and site
layout are shown in figures 2—6. A detailed description of
each site follows. A description of soil cores from these
sites can be found in appendix 1. Monitoring equipment
was installed such that the direct effect of runoff from
impervious surface was minimized. The results represent
runoff from riparian turf-covered areas without significant
effect from impervious-surface runoff.

Lower Ninemile Lake

Two adjacent catchments, one draining a developed
part and one draining an undeveloped part of the property
were monitored (fig. 2). The lawn catchment drained



975 ft? (0.0224 acre), with a slope of 14 percent. The
wooded catchment drained 720 ft* (0.0165 acre), with a
slope of 15 percent (table 2). The turf density was fairly
thin, and the soil at depth was sandy with well-sorted
gravel (appendix 1). The wooded catchment consisted of
conifers and deciduous hardwoods with an understory of
immature deciduous hardwoods. There were a few shrubs
with a mat of decaying conifer needles and other decaying
organic matter for ground cover. The soils in the woods
consisted of a 3-ft mantle of silt over sand.

EXPLANATION

|:| Woods
Surface runoff sampling area

Line of equal land-surface elevation
g
1645 above NGVD 29. Contour interval 5 feet

G1 o Well_and _p?ezometer nest,
and identifier number

A Surface-water sampler

] Precipitation gage

Lawn

b
Woods/—/(gﬂ

A
Woods

//_“’\,

—————
1645 Lower Ninemile Lake

Study Approach 5

Butternut Lake

A lawn catchment of 440 ft? (0.0101 acre) was moni-
tored along with two adjacent wooded sites: upper woods
with a catchment size of 420 ft> (0.0096 acre) and lower
woods with a catchment size of 130 ft?> (0.0030 acre)

(fig. 3 and table 2). The slopes of the lawn, upper woods,
and lower woods were 17, 16, and 16 percent, respectively
(table 2). The turf density was fairly thick; underneath the
turf was a sandy soil mixed with gravel, and a lacustrine
clay at depth (appendix 1). The wooded areas (upper and

Lower Ninemile
Lake

-kl o ‘ ___________ f

ONEIDA COUNTY)

@

G5
)
0 15 30 FEET
Pt
0 5 10 METERS
N
House
and deck
Sidewalk
/6‘55
67 G
AZ7~Lawn sampler
Y/
%y
sampler G3

Figure 2. Lower Ninemile Lake data-collection site, northern Wisconsin.
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lower) consisted of mature deciduous hardwoods and coni-
fers. The ground cover was leaf litter and other decaying
organic matter. The soil consisted of sand and gravel.

Anvil Lake

The lawn catchment drained the smallest area of the
study, 85 ft? (0.0020 acre) and the slope was 14 percent
(fig. 4 and table 2). Three wooded catchments drained
areas of 400 ft? (0.0092 acre), 385 ft? (0.0088 acre), and
365 ft? (0.0084 acre for woods 1, woods 2, and woods 4,
respectively (fig. 4 and table 2). The turf density was fairly
thick, and grass was interspersed with moss. The wooded
areas consisted mostly of mature deciduous hardwoods
with a subcanopy of deciduous hardwoods. The ground
cover was mostly upland sedges, leaf litter, and other
decaying organic matter over soils of silt, sand, and gravel.

Kentuck Lake Site 1

The lawn catchment drained an area of 1,080 ft?
(0.0248 acre) with a gentle slope of 5 percent (fig. 5 and
table 2). This catchment was the largest of all the lawn
catchments monitored, but it had the lowest slope (table 2).
The turf density was fairly thick. The soils appeared to be
lacustrine deposits and fairly tight. Water from snowmelt
and heavy precipitation ponded on the lawn and infiltrated
slowly, and it evaporated or ran off for longer periods
compared with the other lawn sites. Although ground-
water levels were measures during the study, ground-water

Table 2. Catchment characteristics for data-collection sites,
northern Wisconsin

[ft?, square feet]

Drainage area Slope
Site (ft)) (acre)  (percent)
Lower Ninemile Lake, lawn 975 0.0224 14
Lower Ninemile Lake, woods 720 .0165 15
Butternut Lake, lawn 440 .0101 17
Butternut Lake, upper woods 420 .0096 16
Butternut Lake, lower woods 130 .0030 16
Anvil Lake, lawn 85 .0020 14
Anvil Lake, woods 1 400 .0092 24
Anvil Lake, woods 2 385 .0088 23
Anvil Lake, woods 4 365 .0084 22
Kentuck Lake site 1, lawn 1,080 .0248 5
Kentuck Lake site 2, woods 108 .0025 10

sampling and analysis were not done because of the low
infiltration rate of surface runoff.

Kentuck Lake Site 2

The wooded catchment was paired with the site 1
lawn catchment on Kentuck Lake, which is approximately
0.5 mi north of site 2. The site 2 wooded catchment was
108 ft? (0.0025 acre), and the slope was 10 percent
(fig. 6 and table 2). The site 2 wooded catchment was
the smallest wooded catchment monitored. The canopy at
site 2 consisted of mature deciduous hardwoods and some
conifers. The understory was mostly immature deciduous
hardwoods with a ground cover of leaf litter and moss that
was several inches thick.

Methods of Data Collection and
Analysis

Precipitation, surface runoff and water quality,
ground-water flow and water quality, ground-water levels,
soil temperature, and moisture data were collected from
developed and undeveloped catchments. Each data type is
described in the following paragraphs.

Precipitation

Tipping-bucket rain gages were installed at four of
the paired sites (figs. 2, 3, 4, and 6). The rainfall record
at Kentuck Lake site 2 was used for the rainfall record
at site 1. The precipitation during the nonfrozen portion
of the year (March 15 to November 15) was measured at
15-minute intervals and summed for the day. Precipitation
during the winter was estimated from National Oceanic
and Atmospheric Administration (NOAA) weather records
collected at Eagle River, Wis., approximately 10 mi west
of the data-collection sites (fig. 1).

Surface Runoff and Quality

The quantity and quality of surface runoff was
monitored by means of two types of collectors. The
nonautomated samplers used for quantity and quality are
described by Waschbush and others (1999). The sampler
consisted of two 5-ft lengths of a 0.5 in diameter polyvinyl
chloride (PVC) well pipe with slots cut into and along its
length. The pipes then were placed side by side in a shal-
low depression, perpendicular to the slope, so that surface
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runoff was intercepted and could drain into a 1-gal glass
bottle that was buried at the intersection of the two pipes.
This type of collector was installed at six catchments
(table 3). The sampler was checked weekly, plus after rain
and snowmelt events, by a local observer. The surface-
runoff quantity was estimated by determining the volume
of water collected. On several occasions the sample bottle
was full and, therefore, may have overfilled. The volume
for these storms was considered a minimum. Samples were
processed using a 10-port plastic sample splitter to obtain
the volume needed for analysis by the Wisconsin State
Laboratory of Hygiene (WSLOH). If there was not enough
water (less than 100 mL) to process and analyze a sample,
the water was discarded and the bottle was rinsed with
distilled water and then replaced.

Automatic monitors were installed at five catchments
(table 3). The monitor consisted of an approximately
10-ft-long plastic barrier driven into the ground with
approximately 0.5 to 1 in. of the barrier remaining above
the ground (fig. 7). As surface runoff flowed to the barrier,
the barrier deflected the runoff to a drain in the center of
the barrier. The runoff drained into a large-volume tipping
bucket. The tipping bucket was calibrated before deploy-
ment in the field so that the volume of water could be
determined with each tip. The tipping bucket drained into
a 5-gal collector buried in the ground below the barrier.
Water was pumped from this collector to another 5-gal
collector. The total number of tips was recorded. Some
water was diverted into a sample collector and used for
water-quality analysis. A local observer checked the
sampler weekly, and more frequently after rainfall events.
Samples were processed through a cone splitter until the
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required volume of water remained for analysis of the
selected constituents.

Unfiltered samples were used for determination
of ammonia, nitrate plus nitrite, Kjeldahl nitrogen, and
total phosphorus concentrations. Samples to be analyzed
for dissolved phosphorus were filtered in the field
(0.45-micron cellulose nitrate filter). All samples were
analyzed by the WSLOH using standard methods
(Wisconsin State Laboratory of Hygiene, 1992).

Quality-control samples were collected from the
automatic surface-water samplers to ensure that a minor
design problem was not biasing the data. The design of
the automatic sampler system may have resulted in some
water remaining in the pump bucket. This remaining water
could not be completely pumped out during or after the
rainfall event when the sampler was serviced, but it would
be pumped out during the next event, or if there was suf-
ficient time between events, would evaporate and could
leave a residue. This residue could redissolve during the
next event. Five quality-control samples were collected at
Lower Ninemile lawn and Kentuck Lake site 2 woods sam-
pler, four were collected from the Butternut and Kentuck
Lake site 1 lawn samplers, and three were collected at the
Lower Ninemile woods sampler (fig. 1).

The quality-control sample was collected by pro-
cessing 1,000 to 3,000 mL of distilled water through the
sampling system. The median concentration (in milligrams
per liter) at each site can be found in table 4. The con-
centrations may appear high, but the effect of the residue
carryover was expected to be the largest for small events
and negligible for larger events. Because small events were
small contributors to load calculations, residue effects
were not considered further in this study.

Table 3. Type and method of data collection at each site in northern Wisconsin

[--, no equipment]

Surface runoff

Surface-water quality Ground-water Ground-water

Site Precipitation Nonautomatic Automatic Nonautomatic  Automatic quantity quality
Lower Nine Mile Lake, lawn X - X - X X X
Lower Nine Mile Lake, woods -- - X - X X X
Butternut Lake, lawn X - X - X X X
Butternut Lake, woods -- X -- X -- X X
Butternut Lake, woods -- X -- X -- X X
Anvil Lake, lawn X X - X - . -
Anvil Lake, woods 1 - X - X - _ .
Anvil Lake, woods 2 -- X - X - - -
Anvil Lake, woods 4 - X - X - - -
Kentuck Lake site 1, lawn - - X - X _ -
Kentuck Lake site 2, woods X -- X - X - -
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Table 4. Results of quality-control samples for the five automatic samplers used in this study

[All values are median concentration in milligrams per liter]

. Number of Ammonia Nitrate plus Kjeldahl Dissolved Total
Site . .. .
samples nitrogen nitrite nitrogen phosphorus phosphorus
Lower Nine Mile Lake, lawn 5 0.12 0.11 0.65 0.05 0.16
Lower Nine Mile Lake, woods 3 .10 .39 2.8 .063 .14
Butternut Lake, lawn 4 .26 .54 1.1 .06 12
Kentuck Lake site 1, lawn 4 15 .84 1.4 .10 21
Kentuck Lake site 2, woods 5 .67 1.2 2.2 22 .49

Ground-Water Instrumentation and Sampling

A series of water-table wells (long screens intersect-
ing the uppermost ground water) and piezometers (short
screen wells installed below the water table) were installed
at Lower Ninemile Lake, Butternut Lake, and Kentuck
Lake site 1 by means of hydraulic push equipment
(figs. 2, 3, and 5). The water-table wells (given the
designation “A”) consisted of a 1-in.-diameter PVC well
riser and a 5-ft PVC well screen. The screen was placed
such that the midpoint was near the water level measured
during installation. The piezometers consisted of a 3/8-in.
well riser with a 6-in. screen for intermediate (“B”’) and
deep (“C”) piezometers placed near water-table wells
and approximately 10-15 ft and 20-25 ft below land
surface, respectively. Water levels in the wells and piezom-
eters were measured by hand approximately biweekly
except for winter periods, when the measurements were
approximately monthly. The water-table wells also were
instrumented with pressure transducers and capacitance
probes that collected water-level measurements on regular
intervals. Pressure transducers have been reported to have
nonsystematic errors when used for long-term, water-level
monitoring (Rosenberry, 1990); therefore, water-level
data were removed when there were large discrepancies
(greater than 0.1 ft) between the transducer measurement
and the hand-measured water level.

The Lower Ninemile and Butternut site wells were
sampled in February, June, and August 2001. The Febru-
ary sampling included water-table wells (A wells) and
deeper piezometers (B and C piezometers; maximum
depth of 25 ft) in order to assess the base-line concentra-
tions of the shallow and deep systems. The June sampling
also included shallow and deep locations to assess the
change in the constituent concentrations at the water table
and the effect of changes in the shallow ground-water
system on the deeper ground-water system. The August
sampling included only the shallow water-table wells. The
water-table wells were evacuated completely or pumped

to remove at least three well volumes with a peristaltic
pump before sampling. Unfiltered samples were used for
field measurements of specific conductance, temperature,
Eh, and pH, and laboratory measurements of alkalinity.
Filtered samples (0.45-micron cellulose nitrate filter)

were collected for determination of ammonia, nitrate plus
nitrite, Kjeldahl nitrogen, dissolved inorganic phosphorus
(DIP), and total phosphorus concentrations. Samples were
analyzed by the WSLOH using standard methods (Wiscon-
sin State Laboratory of Hygiene, 1992).

Soil temperatures were measured at the lawn and
woods catchments at the Lower Ninemile Lake and But-
ternut Lake properties to assess when the surface was
frozen (times of low ground-water recharge and high
surface runoff). Soil-moisture measurements were col-
lected to assess what were representative moisture levels
in the wooded and developed catchments to understand
the flow distribution and potential for evapotranspira-
tion interception. Unsaturated zones at the catchments
were instrumented with a thermocouple and soil-moisture
probe. Data were collected hourly at 2-in. and 1-ft depths
by means of stationary thermocouples and time-domain
reflectometers. At the Lower Ninemile Lake site, the lawn
and wooded catchments were instrumented on sloped areas
of the landscape. At the Butternut Lake site, the woods
catchment was instrumented on a slope, whereas the lawn
was instrumented on a flat area adjacent to the base of the
slope (near well P3 in fig. 3).

Ground-Water-Flow Model

An analytic element ground-water-flow model, using
the computer program GFLOW (Haitjema, 1995), was
developed to simulate the shallow ground-water system
and its interaction with surface-water features. A com-
plete description of analytic element modeling is beyond
the scope of this report; a brief description taken from
Hunt and others (2000) is given below. Strack (1989) and



Haitjema (1995) provide detailed discussions of the ana-
Iytic element method.

An infinite aquifer is assumed in analytic element
modeling. To construct an analytic element model, features
important to ground-water flow (for example, wells) and
surface-water features are entered as mathematical ele-
ments. Each element is represented by an analytic solution.
The effects of these individual solutions are superposed,
or added together, to arrive at a solution for the ground-
water-flow system. In the GFLOW model used here, the
analytic elements are two-dimensional and are used to
simulate only steady-state conditions (that is, water-levels
do not vary with time). Comparisons of analytic element
to finite-difference numerical model techniques have been
discussed by others (Hunt and Krohelski, 1996; Hunt and
others 1998, Haitjema and others, 2001).

The GFLOW model was calibrated by use of param-
eter-estimation techniques that have been applied to other
ground-water-flow models in Wisconsin (Hunt and others,
2000; Hunt and Steuer, 2000; Kelson and others, 2002).
Briefly, the primary benefit of a properly constructed
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Direction of flow

Drain tube

Tipping bucket (buried)

5-gallon bucket

CROSS-SECTIONAL VIEW

ﬁ\mvener

Sample container

Sample hose —_|

Ground surface
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parameter-estimation model over typical trial-and-error
calibration is the ability to automatically calculate param-
eter values that are a quantified best fit between simulated
model output and observed data. In this study, the GFLOW
model was coupled with the parameter estimation code
UCODE (Poeter and Hill, 1998).

Initial model development included estimating the
elevation of the base of the shallow aquifer, a global
recharge rate, and a horizontal hydraulic conductivity. The
base of the model approximates the bottom of the high-
conductivity unconsolidated sediments (about 1,550 ft
above sea level). The global recharge rate and horizontal
hydraulic conductivity were considered calibration param-
eters; thus, these parameters were varied during model
calibration. Initially, recharge was set to 10.5 in/yr and
horizontal hydraulic conductivity set to 28.4 ft/d, based on
previous modeling results in the area by Hunt and others
(1998).

The ground-water-flow model consists of “far-field”
and “near-field” elements. The location and elevation of
far-field surface-water features were added to the model

(dark green lines in fig. 8) and are simulated with
coarse linesinks (linear analytic elements used to simu-
late surface-water features) and little or no resistance
between the surface-water features and the ground-
water system. The purpose of simulating the far-field
features is to explicitly define the regional ground-
water-flow field around the primary area of interest, or
“near-field.” In this study, the near-field is the primary
area of interest and encompasses Lower Ninemile and
Butternut Lakes, as well as other nearby features that
affect the hydrology of the lakes (blue and pink lines
in fig. 8).

Streambed-sediment resistance in the near-field
was set equal to 0.5 day. Resistance in analytic element
modeling is calculated by dividing the streambed-
sediment thickness by the vertical hydraulic conductiv-
ity. For this model, the value of 0.5 day corresponds to
a 1-ft sediment thickness and a vertical hydraulic con-
ductivity of 2.0 ft/d. The stream width was assigned

Ground surface |_— Drain tube —
: : ’ ’ Tipping
bucket
Stand

k 5-gallon bucket

Submersible pump

NOT 7O SCALE

Figure 7. Schematic of automatic surface-runoff sampler used in
this study.

according to stream order and ranged from 1 to 40 ft.

Parameter sensitivity assessments within UCODE

demonstrated that the model results are not sensitive to

changes in stream or lake resistance when varied over

reasonable ranges; therefore, the values for specific

streams and lakes were fixed in all simulations.
Surface-water features were simulated with

a range of sophistication. Streams in the far-field

were not used for streamflow calibration; thus,

streams simply were modeled as individual linesinks.
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Near-field streams were used for streamflow calibra-

tion and used a “stream element” (Mitchell-Bruker and
Haitjema, 1996) that accounted for upstream gains and
losses to base flow. Streams simulated using stream ele-
ments are shown as pink lines in figure 8. Lakes where
simulation of lake stage was not desired were simulated as
linesinks with resistance. Drainage lakes in the near-field
were linked to the stream network by stream elements
based on the methodology of Hunt and others (1998).
Two of the study lakes (Lower Ninemile and Butternut
Lakes) were simulated by means of a newly developed
analytic lake element (Hunt and others, 2003). The lake
element solves for lake stage on the basis of simulated
surface-water inflows and estimated surface-water out-
flows from the lake. The value of resistance was set equal
to 0.5 day for flowage lakes and 0.5 to 10 days for kettle
lakes. Annual precipitation and evaporation over the lakes
was set to 31.1 and 21.3 in/yr, respectively, on the basis
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of long-term averages for models constructed in western
Vilas County (Hunt and others, 1998).

The model was evaluated with measured data that
included ground-water levels and streamflow (fig. 8). Data
collected during this study and existing field data were
used to evaluate the far-field areas of the model. Ground-
water levels for six existing wells were obtained from
well-construction reports (four wells) and levels measured
as part of this study (two wells). In addition, calibra-
tion targets from area seepage lakes that were thought to
represent the water table (seven lakes) also were used.
Stages from the study lakes (Lower Ninemile and But-
ternut Lakes) were not used as calibration targets because
surface-water outlets controlled their stage. Average condi-
tions (the median flow, or Q50) from a historical stream-
flow-gaging station on the North Branch Pine River near
Alvin (USGS station 04063640) were used as a calibration
target. This target is important because it drains a large

Table 5. Ground-water flow-model weights, measured values, simulated results for water-level and streamflow targets for the

analytic element model, northern Wisconsin

[Optimized recharge = 9.7 inches per year; horizontal hydraulic conductivity = 18 feet per day. STD, standard deviation (feet); CV, coefficient

of variation (dimensionless)]

Water-level targets

Target Target name Weight Weighting Water level (feet above sea level) Residual
number (feet) method Measured value  Simulated value
1 335583_50879 6 STD 1,660 1,652.47 7.53
2 341342_50890 6 STD 1,692 1,698.61 -6.61
3 G7near 2 STD 1,642.5 1,643.77 -1.27
4 Plnear 2 STD 1,693 1,691.22 1.78
5 VI-799 6 STD 1,643.21 1,645.31 -2.1
6 VI-798 6 STD 1,711 1,709.41 1.59
7 Echo Lake 9 STD 1,685 1,681.17 3.83
8 Lone Wolf Lake 9 STD 1,699 1,694.05 4.95
9 Indian Camp Lake 9 STD 1,694 1,685.92 8.08
10 Quartz Lake 9 STD 1,695 1,698.00 -3
11 Bose Lake 9 STD 1,692 1,695.76 -3.76
12 Pat Shay Lake 9 STD 1,660 1,676.26 -16.26
13 Tinsel Lake 9 STD 1,631 1,633.26 -2.26
Mean error -0.58
Mean absolute error 4.85
Root mean square error 6.26
Streamflow targets
Target . Weightin Streamflow (cubic feet per second) i
num!:)er Terget name Weight me%hod ’ Measured value  Simulated value Residual
14 7 mile at Military Tr. 0.2 CV 9 9.2 -0.21
15 9 mile at Military Tr. 2 (&Y 6.8 5.5 1.29
16 9 mile at outlet 2 (6AY 25 20.6 4.37
17 Pine River near Alvin .1 (6\Y 16.6 17.8 -1.15
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part of the study area and is considered representative of
present conditions, although the gaging station ceased
operation in 1967. Preliminary model results indicated that
additional information regarding the distribution of stream-
flow in the site area was needed. Therefore, a synoptic
survey (a spatially distributed set of measurements taken at
approximately the same time) of flows was done on April
30, 2002. Sites in this survey included Sevenmile Creek
at Military Trail, Lower Ninemile Creek at Military Trail,
and the Lower Ninemile Lake outlet. Because this time
period was not a time of median flows, the measured flows
were adjusted to the daily median flow using the data from
the nearest operating USGS gaging station (Popple River
at Fence, USGS station 04063700; approximately 30 miles
southeast of Ninemile Lake).

The parameter optimization requires the modeler
to formalize the importance of the calibration targets by
assigning weights to the observed values (table 5). These
associated standard deviations for ground-water levels and
lake stages ranged from 2 to 9 ft (table 5). The Pine River
gaging station base-flow target was assigned a coefficient
of variation of 0.1. The synoptic flow targets do not have
flow-duration information and were given less weight in
the optimization (coefficient of variation equal to 0.2).

Hydrology

Precipitation

Rainfall recorded at each site for water years 2000
and 2001 can be found in table 6.

Table 6. Precipitation at four data-collection sites for water
years 2000 and 2001, northern Wisconsin

[NOAA, National Oceanic and Atmospheric Administration]

Partial
water year  Water year

2000° 2001
Site (in.) (in.)
Lower Ninemile Lake rain gage 27.99 27.25
Butternut Lake rain gage 31.13 28.53
Kentuck Lake rain gage 26.76 29.86
Anvil Lake rain gage 29.70 29.53
Long-term NOAA average 27.74° 30.21

*Data collection started November 15. Used NOAA rain gage from
November 1 to November 15.

°11-month average.

Precipitation in water year 2000 ranged from 26.76
in. to 31.13 in. and in water year 2001 precipitation ranged
from 27.75 in. to 29.86 in. Precipitation at the study site
bracketed the long-term normal precipitation of 27.74 in.
for water year 2000 (11-month period) and was below
the normal of 30.21 in. during water year 2001 (National
Oceanic and Atmospheric Administration, 2000).

Surface Runoff

Surface runoff was collected at the study sites to com-
pute loads and yields of constituents. The runoff, in inches,
from each catchment and the calculated runoff coefficient
(the ratio of surface runoff to total rainfall that produced
that runoff) can be found in table 7. The median surface
runoff from lawns ranged from 0.002 in. (Anvil Lake Site)
to 0.059 in. (site 1 Kentuck Lake) (table 7). Although the
slope of the Kentuck Lake site 1 catchment was the least
steep of all the lawn catchments, it had the largest runoff
coefficient. This high runoff coefficient likely was due to
the lacustrine soil at Kentuck Lake site 1 being very fine
grained with low permeability. Rainfall often pooled on the
surface, infiltrated slowly, and ran off.

The sandier soil at the Lower Ninemile Lake lawn
had a median runoff coefficient of 0.013 (table 7). The
other two lawns at Butternut and Anvil Lakes were thicker
than the Lower Ninemile Lake lawn and had lower runoff
coefficients than the other sites (table 7). The largest
median runoff coefficient was 0.06 for the lawn catchment
at Kentuck Lake (table 7).

Results from the study sites can be compared to
the coefficient base in the Source Loading and Manage-
ment Model (SLAMM), which is used to generate runoff
volume from urban runoff and contaminant source areas
(Pitt and Voorhees, 1993). The SLAMM coefficient base
has been developed using runoff monitoring data from a
number of sites throughout Wisconsin. The median runoff
coefficient for the clay soils at the Kentuck Lake site 1 is
in the range used in SLAMM. Likewise, the runoff coeffi-
cients for the sites with more sandy soil (Lower Ninemile,
Butternut, and Anvil) also are in the range of runoff coef-
ficients used in SLAMM. In an ongoing study in Madison,
Wis., a lawn similar to that at Lower Ninemile Lake had a
median runoff coefficient of 0.014 (Todd Stuntebeck, U.S.
Geological Survey, written commun., 2002), which is simi-
lar to the median runoff coefficient from this study. The
other two lawns, one at Butternut Lake and the other at
Anvil Lake, are thicker than those at the Lower Ninemile
Lake site and had similar runoff coefficients to lawns being
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studied in Madison, Wis. (Todd Stuntebeck, U.S. Geologi-
cal Survey, written commun., 2002).

Generally, the median surface-runoff estimates from
the wooded catchments were an order of magnitude less
than the median surface runoff from the lawn catchments.
In one case (Kentuck Lake site 2), not a single runoff event
occurred during the study. The lower runoff observed at
the wooded catchments may be due to a number of factors:
(1) the tree canopy likely intercepted a portion of the pre-
cipitation, (2) the thick organic-matter layer at the surface
may have retarded runoff by absorbing the rainfall that fell
on the wooded catchments, or (3) increased permeability
in the upper soil due to bioturbation (for example, worm
holes may have allowed most of the precipitation to infil-
trate). Other investigators have determined that wooded
catchment-runoff coefficients range from 0.05 to 0.025—
much higher values than observed in this study (table 7).

Soil Temperature and Soil Moisture

At both the Lower Ninemile Lake and Butternut Lake
sites, the lawn commonly was warmer than the woods
during the growing season (figs. 9 and 10); the period that
the ground was frozen, however, was similar at both types
of catchments. Therefore, duration of frozen ground is
not considered to be a controlling process on the volume
of runoff generated at these sites. At the Lower Ninemile
Lake site, the lawn consistently was drier than the woods,
both at a depth of 2 in. and 12 in. (fig. 11), indicating less
water infiltrated the soil in the lawn than in the woods. At
the Butternut Lake site, the opposite relation was noted
(fig. 12). This result is attributed to different locations in
the topographic landscape. Whereas the Lower Ninemile
Lake lawn and woods instrumentation were both on a
slope, the Butternut Lake woods instrumentation was on
a slope but the lawn instrumentation was on a flat area
at the base of the slope. The enhanced runoff of water
that, in turn, infiltrated the soil at the base of the slope
would account for higher soil moistures. The associated
evapotranspiration, however, appeared to be higher at But-
ternut Lake because of the higher temperature (fig. 10),
the additional available shallow soil moisture (fig. 12 top
panel), and the reduction in moisture difference between
the 2-in. and 12-in. depth (fig. 12). Increased infiltration
into the shallow soil at the base of the lawn slope may be
evapotranspired before it could recharge to the ground-
water system.

Ground-Water Hydrology

Simulated water-table and water-level residuals from
the optimized model are shown in figure 13a. The opti-
mized recharge (9.7 in/yr) and horizontal hydraulic conduc-
tivity (18 ft/d) were similar to those used in nearby areas
(Hunt and others, 1998; Kelson and others, 2002). The
differences between measured and simulated ground-water
and lake levels were a mean of 0.6 ft, a mean absolute
error of 4.8 ft, and a root mean square error of 6.3 ft (table
5). The largest error in lake stage was noted in the simula-
tion of Pat Shay Lake. Because this target is located on a
steep hydrologic gradient, the simulated stage could have
been improved by simulating the lateral extent of the lake.
The large residual also may be a result of site-specific
geologic features that may control the local ground-water-
flow system but were not included in the regional model.
Simulated flows also were reasonable in magnitude (all
values are within 20 percent of measured value) at a given
site (table 5) but also as distributed throughout the basin.

The ground-water-model results illustrate important
concepts about flows to lakes in this area. First, water
flows toward surface-water features from distant areas
(on the order of miles); therefore, areas that constitute the
ground-water-recharge areas (or zones) for lakes and tribu-
taries are outside the immediate near-shore catchment.
The model also can be used to calculate the capture zones
(fig. 13b) of Lower Ninemile Lake and Butternut Lake.
(The other study basins are not shown because they were
not explicitly included in the modeling for this study.)
These capture zones reflect all the areas that provide
ground-water recharge to the lakes and the tributary
systems to the lakes. Second, simulation results demon-
strate that the zones that feed a lake system can be small or
large and are a function of the larger surface-water system
rather than the size of the lake. Moreover, the vulnerabil-
ity of a lake to changes in the watershed will depend, in
part, on the size of its capture zone. Finally, although the
ground-water model can characterize the regional system,
a smaller-scale view of the site hydrology is needed to
interpret the local catchments monitored during this study.

Site-Specific Hydrology

Lower Ninemile Lake Site

Because the Lower Ninemile Lake site has character-
istics of a flowage lake (a river that has been dammed), the
geologic depositional history and associated near-lake
sediments are simpler than ice-block (kettle) lakes in the
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Figure 9. Soil temperatures at 2 inches and 12 inches below ground surface, Lower Ninemile Lake lawn and wooded catchments,
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Table 8. Estimated ground-water recharge from Lower Ninemile Lake surface catchments, northern Wisconsin

Lawn Woods
Low Intermediate High Low Intermediate High
Recharge rate 8.0 10.0 12.0 10.0 12.0 14.0
(inches per year)
Annual volume of ground 4,862 6,078 7,294 4,488 5,386 6,284

water recharged
(gallons)

area. Therefore, the ground-water system is not affected by
the heterogeneity that occurs near ice-block lakes. How-
ever, Lower Ninemile Lake is regulated according to power-
generation and water-storage needs rather than simple
natural inputs and outputs of water. The lake-level regula-
tion results in changing lake levels that are periodic and
are characterized by winter drawdown, usually mid- to late
October, with a subsequent recovery period (or drawup)
beginning in mid-February until late spring (fig. 14).

The lowering of lake levels increases the gradient of the
ground-water-flow system to the lake (fig. 15a); the recov-
ery period results in short-term reversals in gradient so
that flow is not toward the lake (fig 15b). Approximately
4-6 weeks after the initiation of drawup, the ground-water
system re-equilibrates and is again characterized by flow
from the land to the lake, although with a lower gradient
than during periods of lake drawdown (fig. 15c¢).

A simple mass-balance calculation was done to
estimate the streamflow from the surface catchments
monitored at the sites to the ground-water system. The
surface areas of the lawn and wooded catchments were
multiplied by recharge estimates for the lawn and wooded
catchments. The estimates bracket the ground-water-model
results but were varied spatially because the amount of
measured runoff appreciably was higher in the lawn catch-
ment than in the woods catchments. Although the actual
recharge rate is not known, a range of recharge rates was
used to calculate the volume recharged to the ground-water
system listed in table 8.

The flows from the surface catchments monitored in
this study can be compared to the flows from the larger
regional system using a streamflow-inspection line in the
GFLOW model. The simulated quantity of water flowing
through a vertically oriented cross section can be obtained.
For the approximate width of the Lower Ninemile Lake
lawn and woods (24 ft), the simulated regional streamflow
equals 77,090 ft*/yr for the lawn catchment and 70,590
ft’/yr for the woods catchment, of which the catchments
monitored during this study accounted for about 1 percent
of the ground water discharged to the lake through this
section. Therefore, although areas adjacent to lakes clearly

are important for surface runoff into the lake, most ground
water discharged to the lake is from areas not adjacent

to the lake. This comparison demonstrates that off-lake
development has the potential to affect a lake’s hydrology
and water quality through the ground-water system, even if
surface runoff effects are not expected to be appreciable.

Butternut Lake Site

The Butternut Lake site has characteristics typical of
kettle lakes in northern Wisconsin. The sediments are more
heterogeneous than near flowage lakes and are character-
ized by low conductivity, silt, and clay units that usually
extend beneath the lake and onto nearshore areas (Kenoyer
and Anderson, 1989). This heterogeneity results in more
complex ground-water-flow patterns. Butternut Lake is
not regulated; rather, lake stages are controlled by natural
inputs and outputs of water and are not characterized
by the dramatic gradient reversals observed at Lower
Ninemile Lake.

At the Butternut Lake site, low-conductivity material
was noted in cores near the lake and in the woods (appen-
dix 1), and it has a local effect on the lake/ground-water
interaction. The areas where clay was noted in the boring
are areas where the shallow ground-water levels are higher
than the surrounding ground-water system—both hori-
zontally (fig. 16) and vertically (fig. 17). The flow system
is notably more complex than that measured at Lower
Ninemile Lake (fig. 15). The effect of the clay is twofold:
first, the associated recharge mound can form a barrier to
ground-water flow from the west and reduce the amount
of ground water discharged to the lake. The shape of this
mound (or the effect of the clay layer) often changes—
sometimes it is more an oval recharge mound in the lower
woods around P35, leaving P3 and sometimes P6 unaf-
fected, but at other times the mound is elongated where
the P3, P5, and P6 water levels all are mounded. Second,
the clay serves as a restriction to vertical flow. Therefore,
the ground-water flow is divided into a shallow component
and a deep component, with little interchange expected
between components. This division of ground-water flow
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Figure 14. Lower Ninemile Lake levels, northern Wisconsin, January 1, 1999, to March 1, 2002.

effects the lake-edge buffers on ground-water-transported
constituents. For example, transport from areas upgradient
of the clay unit likely will flow under the clay unit during
times of flow toward the lake, bypassing the buffer-strip
roots. The presence of a clay layer near the lake also
will reduce the likelihood that the buffer-strip roots will
intercept any potential contaminants carried by the distant
ground water. Nearshore ground-water constituents, on the
other hand, will be more focused into the buffer-strip root
zone by the low-conductivity clay.

Although Butternut Lake is not regulated, the flow
system is relatively complex spatially and temporally
(fig. 16). Unlike the Lower Ninemile site, the regional
model is not suitable (because of its large scale) for incor-
porating the geologic detail necessary to simulate the But-
ternut Lake site. Therefore, a comparison of ground water
recharged from the local basins to the water of the regional
system cannot be made. Water levels measured at the
Butternut Lake site indicate that the flow is predominantly
toward Butternut Lake from April through February and
away from the lake during March. Although a comparison
of the importance of regional flow and site-derived flow
cannot be made, water levels collected during this study
indicate that water recharged from the site likely
will discharge to the lake for most of the year.

Nutrient Concentrations

Surface Runoff

Samples were collected during runoff events caused
by rainfall and snowmelt from November 1999 through
September 2001. A total of 76 water samples collected by
the lawn samplers and 67 water samples collected by the
woods samplers were analyzed. The results of all of the
samples collected and analyzed are given in appendix 2.
The maximum, minimum, mean, and median at each site
can be found in table 9.

During the 23-month study period, no samples were
collected at Kentuck Lake site 2 woods site because there
was no surface runoff at this catchment. The woods at this
site could be characterized as being the most mature of
all the woods in the study are and consist mostly of sugar
maple and hemlock. The ground cover is mostly imma-
ture sugar maple and a thick mat of decomposing organic
matter and moss. The mature canopy, thick organic mat,
and low slope (lowest of all the wooded sites — 10 percent)
may have contributed to the lack of surface runoff.

Comparing the median nutrient concentrations from
lawns with the median nutrient concentrations from
woods across sites, no apparent and consistent pattern for
these concentrations is found. For example, at the Lower
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Figures 15. Water-table maps of Lower Ninemile Lake site showing the interconnectedness of the shallow aquifer and lake for

three time periods, northern Wisconsin.

Nutrient Concentrations

A

Water-table contour map from November 15, 2000,
illustrating how the ground-water gradient increases to
the lake as a result of winter drawdown of lake stage.
Lake elevation is 1641.6 feet above NGVD 29. Contour
interval 0.1 foot.

Water-table contour map from April 2, 2000, showing
how spring drawup of lake levels causes reversal in the
ground-water gradient. Lake elevation is 1643.75 feet
above NGVD 29. Contour interval 0.1 foot.

c

Water-table contour map from July 24, 2000, weeks after
drawup; ground-water system has re-equilibrated and
flow is once again to the lake but with less gradient.
Lake elevation is 1643.63 feet above NGVD 29. Contour
interval 0.1 foot.
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Figure 17. Vertical gradients at the Butternut Lake site P5 well nest, northern Wisconsin.

Ninemile Lake site, the median dissolved phosphorus and
total phosphorus concentration for the lawn samples was
greater than those for the woods samples. In contrast, the
median concentration of dissolved phosphorus and total
phosphorus concentration for the lawn samples was less
than the median concentration for the woods samples at
the Butternut Lake site.

A nonparametric Wilcoxon rank-sum test (Conover,
1980) was used to determine whether the differences
between the lawn and woods median concentrations were
statistically significant. At the Lower Ninemile Lake site,
median ammonia nitrogen concentration for the lawn site
was significantly different (P < 0.05) from that for the
woods. None of the other nutrient concentrations were
significantly different. At the Butternut Lake site, median
concentrations for nitrate plus nitrite nitrogen, dissolved
total phosphorus, and total phosphorus for the lawn site
were significantly different (P < 0.05) from those for the
upper woods. When comparing the lawn with the lower
woods, the median nitrate plus nitrite nitrogen, total Kjel-
dahl nitrogen, and total phosphorus concentrations were
significantly different (P < 0.05). At the Anvil Lake site
only, the median dissolved phosphorus concentration at

the lawn site was significantly different from the median
concentration at the woods 4 site.

All sample-concentration data from lawn sites were
composited and compared to composited sample nutri-
ent-concentration data from wooded sites. The maximum,
minimum, mean, median, and number of samples is given
in table 10.

The median nutrient concentrations from the wooded
sites were all greater than those from the lawn sites except
for nitrate plus nitrite nitrogen (table 10 and fig. 18).

The nonparametric Wilcoxon rank-sum test was used to
determine whether the concentrations from the lawn sites
were statistically significantly different from these of the
wooded sites. All of the median nutrient concentrations
for lawns were significantly different (P < 0.05) from the
median nutrient concentrations for woods.

The median concentrations at other sites throughout
the country, as reported in the literature, can be found
in table 11. The median concentrations from this study
are within the range of those from the other literature
(table 11), although the composited median concentrations
from this study are closer to the lower end of the range of
literature values.
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Table 10. Composited values for nutrient concentrations, and number of samples collected at the
lawn and woods runoff samplers at all sites for all storms, northern Wisconsin

LAWN SAMPLES
Number of samples = 76
Concentrations in milligrams per liter

Nitrate plus

Ammonia . Total Kjeldahl Dissolved Total
nitrogen nitrite nitrogen hosphorus hosphorus
g nitrogen g phosp phosp
Maximum 28.1 20.9 46.2 3.60 48.8
Minimum 0.02 .01 33 .01 .009
Mean 1.87 2.43 2.78 .52 1.46
Median 42 77 2.78 17 32
WO00DS SAMPLES
Number of samples = 67
Concentrations in milligrams per liter
Ammonia Nlm.m? plus Total Kjeldahl Dissolved Total
nitrogen nitrite nitrogen phosphorus phosphorus
nitrogen
Maximum 87.4 14.0 126 5.03 16.2
Minimum .013 .01 47 .03 .06
Mean 6.05 1.07 18.4 74 2.26
Median .98 21 7.38 .33 1.12

Table 11. Comparison of runoff concentrations from other studies and data collected in this study of northern Wisconsin

[All concentrations in milligrams per liter; --, not analyzed; USGS, U.S. Geological Survey]

Citation Land use Al.nmonia Nitra.m? plus K!'eldahl Dissolved total Total
nitrogen nitrite nitrogen phosphorus phosphorus
Cole and others, 1997 Turf 4.0 35 1.0
King and others, 2001 Stream draining turf .03 .50 -- -- 13
Dennis, 1986 Residential -- -- -- -- 22
Garn, 2002 Fertilized lawn 1.07 12 5.9 77 2.85
Garn, 2002 Unfertilized lawn .63 14 5.1 .38 1.8
Thomann, 1987 Urban - - 1.3 - .066
Bannerman and others, 1996 Urban 24 49 1.0 .09 .29
Barten, 1997 Lawn 3.6 1.5 5.8 1.0 1.45
Stuntebeck, USGS, written commun., 2002 Fertilized lawn - - - 33 1.12
Stuntebeck, USGS, written commun., 2002 Unfertilized lawn - - - .64 1.34
U.S. Environmental Protection Agency, 1983  Residential -- -- -- .14 .38
Garn, 2002 Woods 43 24 9.8 2.0 4.0
Thomann, 1987 Woods - - .85 - 14
Dennis, 1996 Woods - - - - .055
This study Lawn 0.42 0.77 2.8 0.17 0.32
This study Woods 98 21 7.4 33 1.12
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Figure 18. Concentrations of selected constituents for all surface-runoff samples collected by lawn and woods samplers, northern

Wisconsin.

Ground Water

The water-table wells and piezometers at the Lower
Ninemile and Butternut Lake sites were sampled for
chemical analysis during February, June, and August 2001.
The results are discussed in the following sections below;
the complete results are included in appendix 3.

Lower Ninemile Lake Site

At Lower Ninemile Lake, nutrient (nitrogen and
phosphorus) concentrations in shallow ground water
(figs. 19 and 20) generally were less than those in surface
runoff (fig. 18). Ground-water chemistry was more vari-
able in lawn samples than either the woods samples or the
upgradient-well (G5A) samples (figs. 19 and 20). In the
shallow ground water, concentrations of nitrate plus nitrite
and total phosphorus for lawn samples were appreciably
higher than those for woods samples. Dissolved inorganic
phosphorus and ammonia concentrations were similar in
shallow ground water at both site types.

The dynamic nature of the ground-water chemistry
also is evident in deeper ground water (B and C depths,
figs. 21a, 21b, 22a, and 22b). Nutrient concentrations at
depths are greater than those measured in the shallow
ground water (for example, in G1C), an indication that
areas distant from the lake affect the quality of water that
discharges to the lake. This finding is consistent with the
results of the ground-water-flow model simulation, which
shows that an appreciable amount of the water discharged
to the lake originated away from the near-lake areas.
Because the site is near a ground-water-discharge area
(the shore of the lake) contributes to the temporal vari-
ability of water chemistry in two ways. First, it is an area
of converging flowlines, so small changes in ground-water
level could result in the sample being collected at a loca-
tion with a different flowline and associated recharge area.
Secondly, manipulation of lake stage reverses the gradi-
ent near the lake (fig. 15); therefore, infiltrated lake water
(and reactions facilitated by the infiltrating water) may be
affecting the ground-water chemistry at the site.
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(All samples for total nitrogen were below detection limit.)
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Phosphorus concentrations in the shallow ground-water system of the Lower Ninemile Lake site, northern Wisconsin.
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Figure 21b. Phosphorus concentrations from the shallow (A) and deep (B and C) ground-water systems of the Lower Ninemile
Lake site, northern Wisconsin. (G5 is an upgradient well.)
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Butternut Lake Site

The ground-water-flow system is notably different at
this site in that flow is both to the lake (late spring to early
winter) and from the lake (late winter to early spring).
Therefore, “upgradient” can refer to sites near to or distant
from the lake. Another difference from other sites is that
the shallow ground water was collected only from one
location in the woods at this site, because the shallow
water depth and presence of clay resulted in frozen shallow
wells during the February sampling. Sufficient sample vol-
ume was obtained in the later well samplings at this site.

Unlike the Lower Ninemile Lake site where nutrient
concentrations were similar in the two water-table wells at
the lawn, the shallow ground-water samples at the But-
ternut Lake site demonstrate that ground water at various
locations within the lawn vary in nutrient concentrations
(figs. 23 and 24), presumably because of topographic
position in the landscape (fig. 3). Generally, samples from
the lawn slope (P2A) and away from the base of the slope
(P4A) had lower nutrient concentrations than the lawn
sample at the base of the slope (P3A). This difference
might mean that surface-runoff-transported nitrogen and
phosphorus constituents infiltrated at the bottom of the
hill, before they reached P4A. In general, lawn samples
had similar or greater nutrient concentrations than did
samples of the shallow ground water underlying the woods,
although this difference may be an artifact because of a
smaller number of samples from the woods than from the
lawns.

Similar to the Lower Ninemile Lake site, the vari-
ability in the shallow ground-water chemistry as reflected
in the lawn samples from P3A was greater than that for the
woods. The higher concentrations and greater variability of
shallow ground-water chemistry at lawn well P3A indi-
cate a more dynamic hydrologic setting than at any other
site. The location on the flat area adjacent to the base of
the slope likely resulted in increased recharge of lawn-
derived water, from a larger area of lawn than for the other
lawn-sampling locations (P2 and P4, fig. 3). This result is
consistent with the higher soil moisture measured at this
location (fig. 12) and the deeper penetration of nutrients
into the subsurface. At the other lawn catchments, less
variability was noted in nutrient concentrations over time.

The dynamic nature of the nutrient ground-water
chemistry again is indicated in both the shallow ground
water and the deeper ground water sampled (B and
C depths, figs. 25a, 25b, 26a and 26b). Higher nutri-
ent concentrations at depth in areas where high nutrient
concentrations are not seen in the shallow ground water

(for example, in P1C) indicate that areas distant from the
local recharge zone also are important for characterizing
ground-water quality at the site. Moreover, the higher infil-
tration hypothesized in the P3 well and piezometer nest
could explain the higher nitrogen concentrations measured
deeper in the ground-water system—something not noted
at any other well and piezometer nest.

Nutrient Yields

Although determining concentrations may provide
insight into the water-quality process at a given location
in the landscape, more important may be the constituent
loads (concentration multiplied by water volume) and, ulti-
mately, the yields (load divided by catchment area) from
the different land uses.

Because nutrient loads are a product of water volume
and concentration, the amount of runoff at these sites is
an important factor in computing nutrient loads and the
subsequent yields (load divided by catchment size). As
shown in the Surface Runoff section, runoff from the lawn
catchments was roughly an order of magnitude greater
than runoff from the wooded catchment. This increased
volume will be a major factor in explaining the higher
nutrient yields from lawns than from the woods. Yields
for nutrients, in pounds per acre, were computed for the
surface-runoff samples at all of the sites (lawn and woods).
Load and yield data for the surface-runoff samples are
given in appendix 4.

Surface Runoff

Event-to-event yields can be variable. For example,
from the 11 sites monitored, single-event contributions
ranged from 14 to 73 percent of the total ammonia nitro-
gen load for the 11-month study period. Large propor-
tions of annual loads generally are attributed to snowmelt
events; but in the example here, the largest ammonia nitro-
gen loads at 5 of 11 catchments were from rainfall events.

For all constituents, the median nutrient yields from
lawn catchments always were greater than the median
nutrient yields from the woods (fig. 27); for ammonia
nitrogen, nitrate plus nitrite, and total phosphorus median
yields, the difference was at least an order of magnitude.
A nonparametric Wilcoxon test was used to demonstrate
that yields for all nutrient constituents from the lawn
catchments were significantly different (P < 0.05) from
those from the wooded catchments. Although nutrient
concentrations were greater in the woods, the runoff water
volumes were the most important factor in determining
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whether lawns or woods contributed more nutrients. These
results appear to indicate, therefore, that nutrient export
could be reduced by reducing runoff volume.

Annualized yields from each site are presented in
figures 28 and 29. Annualized yields were computed by
summing the individual yields and normalizing by the
23-month time period. Nutrient yields in pounds per acres
per year are in table 12). In almost all cases, the annual
nutrient yields from lawns are greater than those from
corresponding woods. The only exception to this pattern is
the Butternut Lake lower wooded catchment, where yields
of ammonia nitrogen, Kjeldahl nitrogen, and dissolved
phosphorus and total phosphorus were greater than those
from the Butternut Lake lawn catchment.

Nutrient yields from both the lawn and wooded areas
generally were less than those found in the previous stud-
ies with similar land uses (table 13). These differences
may be due to generally larger catchment areas investi-
gated in other studies. This study narrowly focused on
small lawn and woods areas; previously reported yields
have likely incorporated the added runoff-volume impact
of other impervious source areas, such as streets, rooftops,
and disturbed soils. A comparative study of residential/
forested land uses (Dennis, 1996) reported greater total
phosphorus yields than observed here; although the export
ratio (lawn/forest yield value) of 7.4 reported by Dennis
(1996) is similar to the 9.0 ratio observed in this study.

Ground Water

Similar to surface-water yields, ground-water
yields can vary, with individual rainfall/snowmelt events
sometimes contributing substantial portions to the annual
nutrient yield. For example, a study performed in sandy
soils in southern Wisconsin demonstrated large temporal
changes in nitrate concentrations, which were driven by a
complex relation of precipitation infiltration, nutrient load-
ing, vegetation maturity, and residual concentrations from
the previous year (Muldoon and others, 1998). Although
the investigators noted that large proportions of annual
loading were attributed to snowmelt events, the highest
loading rates were measured during the fall but were not
associated with rainfall events. Clearly, characterizations
of the temporal complexity with three sampling periods are
inherently uncertain; therefore, the following discussion of
yields cannot be considered a well-constrained estimate of
ground-water loading to the lakes. However, it is instruc-
tive to assess relative contributions from wooded and lawn
areas and to provide an approximate estimate of the rela-
tive ground-water contributions compared to surface-water
contributions.

A comparison of the lawn and wooded-area yields
was done for the Lower Ninemile Lake site (fig. 30). Esti-
mates of the ground-water load and yield were computed
using the following assumptions. First, the concentrations
measured in the shallow ground water at the locations in

Table 12. Summary statistics for annual nutrient yields in runoff from the lawn and woods catchments,

northern Wisconsin

[Yields in pounds per acre per year]

Lawn annual yields, n=4

Ammonia Nitrate plus Total Kjeldahl Dissolved
. L . Total phosphorus
nitrogen nitrite nitrogen nitrogen phosphorus
Maximum 4.35x 107 5.63 x 10! 4.55 x 10" 5.80 x 10 8.19x 107
Minimum 1.37x 102 4.02 x 10* 456 x 10? 3.77x 107 1.22x 10?
Mean 2.5x 107 1.91 x 10! 1.96 x 10! 2.156 x 102 3.48 x 10
Median 2.15x 107 1.01 x 10" 1.43 x 10" 1.22x 102 2.56 x 102
Woods annual yields, n=6
Ammonia Nitrate plus Total Kjeldahl Dissolved
. L . Total phosphorus
nitrogen nitrite nitrogen nitrogen phosphorus
Maximum 2.16 x 107 1.64 x 102 2.03x 10! 5.20x 107 2.23x 102
Minimum 4.54 x 10 9.86 x 107 2.92x 107 3.12x 10* 4.77 x 10*
Mean 7.61x 103 3.87x 107 4.59x 102 1.51 x 107 5.45x 1073
Median 3.86x 107 4.39x 10 1.36 x 102 7.80 x 10* 247 x 107




Table 13. Comparison of nutrient yields from previous studies throughout the country and from this study in northern Wisconsin

Nutrient Concentrations

[All yields in kilograms per hectare per year; --, not analyzed]

Kieldahl Total
Previous study Land use 4 . phosphorus
nitrogen yield .
yield
King and others, 2001 Stream draining turf -- 0.33
Kussow, W.R., University of Turf - 40
Wisconsin—Department of Soil
Sciences, written commun., 2002
Dennis, 1986 Residential - 1.75
Rechow and others, 1980 Residential 5.5 1.1
Panuska and Lillie, 1995 Urban - 52
Thomann, 1987 Urban 5.0 1.0
Panuska, J.C., Wisconsin Department of Rural residential - .10
Natural Resources, written commun., 2002
Panuska and Lillie, 1995 Woods - .09
Thomann, 1987 Woods 3.0 40
Dennis, 1986 Woods - .19
Panuska, J.C., Wisconsin Department of Residential woods - .08
Natural Resources, written commun., 2002
Rechhow and others, 1980 Residential woods 2.46 .20
This study Lawn 0.16 0.025
This study Woods 0.015 0.003
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the lawn and woods characterized the entire associated
lawn or woods catchment. Second, a median concentra-
tion of the three sampling periods was representative of
the entire year. Third, the surface area that supplied the
ground-water recharge did not change over time. Last,

the actual ground-water-recharge rate was bracketed by
the low, intermediate, and high recharge rates used to
calculate the volume of ground-water recharge listed in
table 8. Results derived from the use of these assumptions
clearly indicate that ground water in the catchment can be
a major pathway for nutrient transport (fig. 30). Because
of the small sample size, a statistical determination of
significance could not be done as was done for surface-
runoff nutrient yields, but the results indicate that ground-
water yields of nitrate plus nitrite and total phosphorus
from lawns are approximately 3 to 4 times those from the

woods. No obvious difference was found between ground-
water yields from the lawn or woods for dissolved inor-
ganic phosphorus (fig. 30).

Because ground-water quality measured in the wells
at the Butternut Lake site was varied over time and space
and because characterization of the ground-water-flow
system was made difficult by the presence of the clay
lens, considerable uncertainty is associated with loads to
Butternut Lake. Obtaining accurate estimates of nutrient
yields would require additional characterization of the
ground-water-flow system and the spatial and temporal
nutrient history in the shallow ground water. These inher-
ent uncertainties notwithstanding, it appears that the find-
ings from the Lower Ninemile Lake site also may apply
to the parts of the Butternut Lake site given the differ-
ences in concentrations measured in shallow ground water
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Figure 30. Comparison of surface runoff and ground-water yields at the Lower Ninemile Lake site, northern Wisconsin.

beneath the lawn and the woods. Because the ground water
immediately under the P3 lawn location contains higher
nutrient concentrations than that under the woods, nutri-
ent yields from lawn areas might be expected to be greater
than yields from undeveloped woods areas. However, the
Butternut Lake site results also indicate that the location
and type of lawn site can affect ground-water nutrient
yields. Given the results from the P3 well nest, lawn sites
where the slope ends at the lakeshore are expected to have
a large adverse effect on the lake. Results from the P4 lawn
location indicate that an intervening flat or buffer area may
reduce the effects of the higher runoff and also may allow
uptake of the high levels of nutrients (especially phospho-
rus) infiltrated into the shallow ground water. However,
this indication requires additional work to assess trans-
ferability to other lawn settings and ground-water-flow
systems.

Future Work Needed For Calculating
Loads to Lakes

The results presented in this report characterize the
near-lake loads at catchments within the four lake basins.
However, additional information is needed to extrapolate
these results to the larger lake and (or) riparian system. Cap-
ture zones of the Lower Ninemile Lake and Butternut Lake
systems are shown in figure 13b. Because capture zones

reflect all the areas that discharge ground water to the lakes
and the tributary systems to the lakes, estimates of the land
use in these zones and associated nutrient loads and trans-
formations would have to be obtained in order to estimate
total lake loads and the effects of land-use change on the
lake loads. In addition, nutrient transformations and sinks
in the watershed, along with those within tributary streams
or headwater lakes, also may have to be accounted for.

Transferability of Ground-Water
Results

Ideally, the study results described here would
be widely applicable to many other sites and settings.
However, it is unlikely that a ground-water study of two
developed and undeveloped catchments can encompass
the natural variability of environmental settings and flow
systems. This observation notwithstanding, we believe that
some generalities are applicable to many sites in northern
Wisconsin.

First, dammed flowage lakes can be expected to have
a simpler geology and flow system than natural ice-block
(kettle) lakes. A great deal of recreational development has
occurred around lakes in northern Wisconsin; therefore,
the subsurface information from water wells may be mis-
leading in terms of regional subsurface geologic conditions
(John Attig, Wisconsin Geological and Natural History



Survey, written commun., 2002). Most of these wells are
near lakes and tend to reflect the local complex stratigra-
phy resulting from the demise of an ice block and are not
representative of the much more uniform sandy sediment
that dominates a short distance from most lakes in the
extensive outwash plains. Therefore, although ice-block
lakes are expected to have more complex near-lake geol-
ogy and associated site-scale flow systems, the regional
flow system is expected to be more similar to the flow
system observed at the Lower Ninemile Lake site.

It should be noted that not all ice-block lakes are
bordered by complex geology (John Attig, Wisconsin
Geological and Natural History Survey, written commun.,
2002). The protruding ice block may not contain appre-
ciable debris, with little sediment available for deposition.
Moreover, if the ice block is deeply buried rather than
protruding, no material is available to collapse on the
fine-grained sediments of the ice-block depression. Attig
(1985) suggests that the topography near ice-block lakes
can be useful for identifying the presence of debris-rich
protruding ice blocks; that is, hummocky terrain adja-
cent to the southern and western sides of lakes indicates
the presence of a protruding debris-rich ice block. These
areas would be expected to have the near-lake silt and clay
layers and more complex lake-ground water interaction,
such as that observed by Kenoyer and Anderson (1989) in
western Vilas County.

Shallow ground water beneath lawn catchments at the
Lower Ninemile Lake site had higher and more variable
nutrient concentrations than did ground water underneath
the adjacent undeveloped wooded catchments. At two lawn
areas at the Butternut Lake site, however, ground-water
quality was similar to ground-water quality underlying
the undeveloped woods. On the basis of concentrations
and yields, the study results indicate undeveloped wooded
areas have less effect on the shallow ground-water nutri-
ent levels than do lawn areas. Although more work is
needed, the study results indicate that choosing appropri-
ate landscape position for lawns (such as slopes that do
not terminate at the lake and areas with flat intervening or
buffer areas between lawn and lake) can help reduce the
adverse effect of the lawn on the shallow ground water and
ultimately the lake.

Summary

With recent, rapid shoreline development in northern
Wisconsin have come concerns that the increased devel-
opment may impair lake-water quality. In order to assess
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the effects of development on lakes, the U.S. Geological
Survey, in cooperation with the Wisconsin Department
of Natural Resources, quantified the surface runoff and
ground-water inputs from 4 catchments in northern
Wisconsin.

Surface runoff and ground-water volumes and water-
quality samples were collected over a 23-month period
(November 1999 — September 2001) from lawn/wooded
paired catchments in nearshore areas of four lakes in
northern Wisconsin. In general, the surface-runoff volumes
from the lawn catchments were an order of magnitude
greater than those at the respective paired wooded catch-
ments. Because nutrient loads were simply a product of
the water volumes and concentrations, the increased water
volumes from the lawn sites resulted in greater nutrient
loads and subsequent annual yields.

No clear pattern was found in the surface-water nutri-
ent-concentration data in comparisons of nutrient concen-
trations among catchments. The nonparametric Wilcoxon
test was used to determine whether the difference in the
median concentrations were statistically significant. Some
of the median nutrient concentrations from lawns were
significantly greater than those at paired woods catch-
ments. When a composite of all lawn samples across sites
was compared to a composite of all woods samples across
sites, the median nutrient concentrations from woods were
greater than those from the lawns, except for nitrate plus
nitrite nitrogen.

The ground-water system was monitored with wells,
piezometers, thermocouples, and soil-moisture probes. At
the Lower Ninemile Lake site, (sloped) lawn soils were
warmer and drier than soils in the woods. At the Butternut
Lake site (lawn flat, woods sloped), the lawn generally was
wetter, reflecting runoff from the adjacent slope. Ground-
water levels varied appreciably as a result of manipulations
of lake stage (Lower Ninemile Lake site) and complex
geology inherent to kettle lakes (Anvil Lake, Site 1 Ken-
tuck Lake, and Butternut Lake sites). Ground-water-flow
modeling of the site showed that much of the ground water
delivered to the lake resulted from distant areas that did
not contribute runoff directly to the lake. A complete
study of lake loads, therefore, would have to include near
and distant areas in the ground-water contributing area of
the lake.

The wells and piezometers were sampled for chemi-
cal analysis three times during the study period. At the
Lower Ninemile Lake and Butternut Lake sites, the shal-
low ground-water chemistry varied appreciably over time
in the lawn samples. This variation was not as evident in
the woods or the upgradient well.
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Although concentration data can give insight into
short-term processes and transport mechanisms affecting
lake water quality, the effects of land uses on water quality
ultimately will be a result of yields of constituents being
transported to the lake. Results of yield computations
indicate that median nutrient yields from lawns always
were greater than those from woods. The median yields
from lawns were an order of magnitude greater for ammo-
nia nitrogen, nitrate plus nitrite, and total phosphorus than
those yields from woods. Runoff volumes were the most
important factor in determining whether lawns or woods
contributed more nutrients to lakes.

The ground-water system may be an important path-
way for nutrient transport; therefore, yields of constitu-
ents to ground water from lawns and wooded areas were
calculated for the Lower Ninemile Lake site. Although
there is uncertainty concerning whether results from three
ground-water sampling periods represent actual condi-
tions, it appears that lawns are approximately 3 to 4 times
greater contributors of nitrate plus nitrite nitrogen and total
phosphorus than woods when yields were computed by
means of median concentrations and a range of recharge
rates. No obvious difference was indicated between lawns
and woods for dissolved inorganic phosphorus.

This study characterizes the nearshore lake loads
at two locations within the respective basins. Additional
information is needed to extrapolate these results to a
large lake and (or) riparian system. Ideally, these study
results would be widely applicable to many other sites and
settings. The ground water beneath two lawn catchments
had nutrient concentrations greater and more variable
than those in ground water beneath adjacent undeveloped
(wooded) catchments. This study indicates that undevel-
oped wooded areas have less effect on shallow ground-
water concentrations than do lawn areas. Also, surface-
runoff yields from the wooded site would have less effect
on the lake water quality than the surface-runoff yields
from the lawn sites. Choosing the appropriate landscape
position when selecting lawn location (slopes that do not
terminate at the lake, and areas with intervening flat or
buffer zones between lawn and lake) can help reduce the
adverse effect of the lawn on the shallow ground-water
quality and, ultimately, the lake water-quality.
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Appendix 1. Description of soil cores from the Lower Ninemile Lake lawn and woods sites, and the site 1 Kentuck Lawn lawn site

A total of five cores were collected at Lower Ninemile Lake, Butternut Lake, and Kentuck Lake site 1 by means of a
Geoprobe sampler equipment with a large-bore-probe drive system. Core diameter was 1-in and core lengths generally were
8-ft. Cores at individual sites were collected in both woods and lawns. On a regional scale, the surficial deposits in the vicin-
ity of these lakes are similar. On a site-specific scale, a major difference among the sites was the presence or absence of fine-
grained material. For example, lacustrine clay was found at depth at Butternut Lake site and at the surface at the Kentuck
Lake site. Even at the same lake site, variation in the fine-grained material was found. For example, a 3-ft mantle of silt over
sand was found at the Butternut Lake site in the wooded area but was absent from the site on the lawn. Sand and gravel was
found at all of the lakes sites.
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Appendix 1. Soil core descriptions for selected wells in Vilas, Oneida, and Forest Counties, Wisconsin

Location Well

Interval
(feet below
level surface)

Core description

Butternut Lake (Forest County)

(woods) P1A

(lawn) P2A

Kentuck Lake (Vilas and Forest Counties)
Site 1 KI1A

(lawn)

Lower Ninemile Lake (Oneida and Vilas Counties)

(woods) Gl1A

(lawn) G7A

0-0.5 Silt loam with organic matter
0.5-1 Silt loam

1-5 Gravelly sand

5-6 Clean fine sand

6-8 Thin lenses (<1 inch) of fine sand and silty sand
8-10 Silty clay
10-12 Core empty (probably loose sand)
0-0.5 Silt loam with organic matter
0.5-1 Silt loam

1-8 Gravelly fine sand

0-1 Clay with organic matter

1-5 Clay

5-6 Clay with sand lenses

6-7 Clean sand

7-8 Gravelly sand

0-3 Silt

3-5 Clean fine sand

5-8 Clean medium sand

0-1 Silty fine sand

1-4 Clean fine sand

4-7 Gravelly medium sand

7-8 Clean fine sand
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