# PLANTS

# For Stormwater Design

## Species Selection for the Upper Midwest

Daniel Shaw Rusty Schmidt







# Plants for Stormwater Design

Species Selection for the Upper Midwest

Daniel Shaw & Rusty Schmidt Authors

> Sam Brungardt Editor

Richard Harrison Designer



To obtain a free copy of this guidebook, telephone (651) 297-8679 or write to Operations and Environmental Review Section, Regional Environmental Management Division, Minnesota Pollution Control Agency, 520 Lafayette Rd. N., Saint Paul, MN 55103-1402.

This publication can be made available in other formats, including Braille, large type, computer disk or audiotape, upon request.

#### FUNDING

Funding for this guidebook was provided through a grant from the U.S. Environmental Protection Agency.

#### **ACKNOWLEDGMENTS**

This guidebook is the result of the hard work of many individuals. First, we would like to thank Mark Gernes at the Minnesota Pollution Control Agency (MPCA) for administering the grant for this project and providing technical guidance. Rich Harrison played a significant role in the project, tirelessly conducting layout and graphic design. Among other MPCA staff, we are grateful to Sam Brungardt for taking on the daunting task of editing this complex document, to Carol Pruchnofski for the great job she did designing the cover, to Kathy Carlson, who led us through the printing process, and to Louis Flynn, who provided technical guidance. We also thank Jackie Newman for developing the range graphic for the book and Aaron Mikonowicz for assisting with the development of flood tolerance graphics.

Many professionals throughout the region played a significant role reviewing the plant charts and the final draft. Among these are Steven Apfelbaum, Kevin Bilgalke, Mary Blickendorfer, Julia Bohnen, Susan Borman, Mike Evenocheck, Diane Hellekson, Jason Husveth, Bob Jacobson, Beth Kunkel, John Larson, Mary Meyer, Byron Shaw and Leslie Yetka.

We also thank Bill Bartodziej and the Ramsey-Washington Metro Watershed District for providing hydrographs and other technical information about stormwater projects. Paul Jackson, Jason Husveth, Rusty Schmidt, Jeff Shaw, Tony Randazzo and Paul Bockenstedt were the primary photographers for the book, and we appreciate their contributions.

#### **ABOUT THE AUTHORS**

Dan Shaw is involved in ecological restoration, landscape and stormwater design and landscape planning at the Saint Paul-based nonprofit, Great River Greening. He has worked as an ecologist and designer for several years in both the public and private sector and is author of *Native Vegetation in Restored and Created Wetlands*. He also is an adjunct assistant professor in the Landscape Architecture Department at the University of Minnesota, where he teaches plant identification and planting design classes. Shaw is also co-owner of Another Sun Nursery, a company that grows native prairie, woodland and wetland species.

Rusty Schmidt is a wildlife biologist and landscape ecologist with 10 years of natural resource experience, having spent approximately eight years with the Minnesota Department of Natural Resources and two years at URS. He conducts inventories and evaluations for game and non-game wildlife species and has conducted function and value assessments for wetlands and woodlands. Schmidt is also very involved in designing and constructing alternative methods for managing surface water runoff in an environmentally conscious way. He has created designs for restorations, rainwater gardens, bio-infiltration swales and bioretention areas. His Cedar Pond project is featured at the end of this guidebook.



### TABLE OF CONTENTS

| Funding                                                                                | i   |
|----------------------------------------------------------------------------------------|-----|
| Acknowledgements                                                                       | i   |
| About the Authors                                                                      | İ   |
| Table of Contents                                                                      | 111 |
| Introduction                                                                           | 1   |
| Using the Guidebook                                                                    | 3   |
| Environmental Influences on Plants                                                     | 5   |
| Plant Considerations and Species for Stormwater<br>Management Practices                | 23  |
| Stormwater Management Practices                                                        | 27  |
| Literature Cited                                                                       | 53  |
| Plant Species Information                                                              | 60  |
| Plant Pages Bibliography                                                               | 338 |
| Appendix 1, Planting and Maintenance Recommendations                                   | 344 |
| Appendix 2, Vegetation and Hydrology Data for Three Twin<br>Cities Stormwater Projects | 351 |



#### INTRODUCTION

In recent years interest has increased in the use of innovative methods to retain and treat stormwater. These methods, often called stormwater management practices (MPs), rely on natural processes, such as microbial activity, filtration, infiltration, denitrification, nutrient reduction and evapotranspiration, to attain water-quality goals. Although technical information is available on the design of many types of stormwater MPs, little information is currently available on plant species appropriate for these systems. This book has been developed to guide designers through the process of selecting plant



RAIN WATER GARDEN

species for a variety of stormwater MPs.

Plant species included in this book have been chosen based on their availability, presence in the Upper Midwest before European settlement, aesthetic properties and functional abilities within stormwater MPs. Native plants are the focus of the book and are recommended exclusively due to their hardiness, and the wide variety of functions they provide. See page 61 for a complete list of species included in the book.

This guidebook focuses on the

selection of plant species that will optimize landscape function. The beneficial functions plants perform in the landscape are varied and complex, and range from providing habitat for beneficial microbes to physically inhibiting the flow of stormwater. The ability of plants to intercept and hold rainwater and to decrease water flow with stalks, stems, branches and foliage is one of the better recognized functions of vegetation, but there are many others (MPCA 2000). In many stormwater systems, native vegetation provides habitat for amphibians, reptiles, birds and insects. Native plants also take nutrients into their tissues and their roots provide a substrate for growth of bacteria and algae, which are responsible for nutrient cycling and organic degradation. In addition, decaying plant matter supplies fixed organic carbon and food for microbes (Fassman et al. 2001). Native plants also contribute to the water cycle by returning water to the atmosphere through evapotranspiration. In stormwater MPs such as vegetated filter strips, the roots of native species increase soil strength and stability. Another function of native plants, particularly in urban areas, is to add aesthetic value to stormwater systems. The vegetation softens the appearance of structures and shoreline edges, adds interest through line, texture and contrast, and provides color and harmony with the natural environment (Fassman et al. 2001, MPCA 2000).

Selecting plants for stormwater MPs is not a simple process. Stormwater systems are often affected by a number of environmental conditions that are not conducive to plant growth and survival. Some of these environmental conditions include prolonged flooding, fluctuating water levels, sedimentation and pollutants. To complicate matters, invasive species are sometimes better adapted to the above-mentioned conditions and ongoing plant management may be important for project success.

#### Tools included in this book to aid plant selection

- Information about environmental factors that influence wetland plants
- Description of retention, detention, infiltration, wetland and filtration BMPs and species lists for individual types of BMPs
- A plant matrix to select plants appropriate for various environmental conditions
- Information and photographs of 131 plant species
- Hydrology and species information for three stormwater projects in the Twin Cities area

#### USING THIS GUIDEBOOK

This book was developed to lead designers through a plant selection process. First, **environmental factors** that influence plants in stormwater systems are presented. The potential influence of these environmental factors should be investigated during the site-analysis



INFILTRATION SWALE (ADAPTED FROM CITY OF PORTLAND)

process and will be useful information for the selection of stormwater management practices (MPs).

Next, information is presented for common types of MPs and plant considerations are provided for each. The information about stormwater MPs corresponds to design information in the Minnesota Urban Small Sites BMP Manual, Stormwater Best Management Practices for Cold Climates (Barr 2001) and the *Protecting* Water Quality in Urban Areas, Best Management

*Practices for Dealing with Storm Water Runoff from Urban, Suburban and Developing Areas of Minnesota* manual (MPCA 2000). Only stormwater MPs that incorporate vegetation are included in this guidebook.

In addition to a discussion of planting considerations for each system, **plant lists** are provided. These lists include a large number of species for each stormwater MP. Many species were included to ensure that plant options are available to cover as many potential site conditions as possible. The plant lists are arranged by scientific name and range from mesic prairie species to emergent wetland plants. To help designers refine their plant lists for a project, **detailed information is provided for all of the 131 species that are included in the plant lists.** Page numbers are provided in the plant lists referring to the more detailed information for each plant species located in the Plant Species for Stormwater Management Practices section of this guidebook.

#### Information for each plant includes

- Habitat/plant community and type of system where the plant can be used
- Geographic range
- Plant description
- Normal water level for which the species is adapted
- Fluctuation tolerance
- Sensitivity of other tolerances
- Design considerations
- Wildlife use
- Nursery/plant information
- Planting techniques
- Indicator status

**Flood tolerance charts** that correlate water level and duration are presented to demonstrate how long each\_species can remain inundated. These charts were developed from available research, site observations and professional judgement and review.

A **plant matrix** summarizing information for each plant starts on page 66. The plant matrix has been developed from information for each of the 131 species in the guidebook. The matrix will aid in plant selection for a number of different environmental conditions and stormwater management practices.

The authors gathered **plant composition and hydrology information for three stormwater projects** in the Twin Cities area. Plant community success and structure for each case study project is presented in appendix 2. This information should be useful to designers in making decisions about plant selection.

#### **ENVIRONMENTAL INFLUENCES ON PLANTS**

Many environmental factors affect plant growth and survival. These factors should be considered during project planning (particularly during plant selection). This guidebook is designed for the selection of plants after stormwater MPs have been chosen for a site. However, many site characteristics that relate to plant growth should also be considered when stormwater MPs are being selected. A thorough site analysis is necessary to compile information to aid in species selection.

#### General site conditions to investigate during site analysis

- Texture, organic content and pH of the soil
- Anticipated water levels or soil moisture
- Adjacent plant communities
- Slopes
- Surrounding weedy vegetation
- Amount of sun or shade
- Aspect (north-, south-, east- or west-facing slope)

Several additional environmental factors can significantly affect plant growth in stormwater projects. The following section provides detailed information about these factors. The potential influence that each of these may have on a project should be investigated thoroughly during site analysis to aid in the plant-selection process.

#### **Environmental threats to investigate**

- Flood depth and duration
- Low water levels
- Flood frequency
- Wave energy
- Sediment loads
- Pollutants and toxins

- Nutrients
- Salt
- Turbidity
- Erosion
- Invasive plants
- Herbivores

**Flood Depth and Duration** Flood depth and duration can significantly influence the growth and survival of vegetation. Flooding particularly influences plants in detention basins and wetland systems that receive a significant amount of water during storms.

The effect of flooding on plants includes the inhibition of seed germina- tion and vegetative reproduction, changes in plant anatomy and mortality. In plants that are not adapted to flooding, leaf and fruit formation and growth can be suppressed, premature leaf abscission and senescence can result, and shoot dieback and decreased cambial



URBAN STREAM

growth can occur in woody plants. Flooding can also inhibit root formation and branching as well as growth of existing roots and mycorrhizae. It may also lead to decay of the root system.

Flooding can often cause many physiological changes in plants: photosynthesis and transport of carbohydrates are inhibited, absorption of macronutrients (nitrogen, phosphorus and potassium, or N, P and K) is decreased due to root mortality, mycorrhizae may be lost, stomata may close and root metabolism may be suppressed. The hormonal balance in plants can also be altered by

increases in ethylene (Kozlowski 1997).

Despite the negative influences of flooding, many plant species have developed physiological and anatomical adaptations that allow them to survive in flooded conditions. These adaptations include metabolic adaptations, oxygen transport and rhizospheric oxidation, hypertrophied lenticels, aerenchyma tissue and adventitious roots. **Metabolic adaptations.** Several metabolic adaptations to flooding are utilized by plants. They include control of energy metabolism, availability of abundant energy resources, provision of essential gene products and synthesis of macromolecules and protection against post-anoxic injury (Kozlowski 1997).

**Oxygen transport and rhizospheric oxidation.** This is the capacity of plants to absorb and transport oxygen from above-ground tissues to roots growing in oxygen-scarce environments. Oxygen transport is aided by hypertrophied lenticels, aerenchyma tissues and adventitious roots (Kozlowski 1997).

**Aerenchyma tissue.** This root and stem tissue is permeated with large intercellular spaces. Species that do not respond to soil anaerobiosis by enlarging their internal air spaces typically undergo anoxia in their roots (Kozlowski 1997).

Adventitious roots. Adventitious roots are specialized roots growing at or just above the water or ground surface that increase the flood tolerance of plants. Adventitious roots increase water absorption, assist with oxygen absorption, transform some toxins to less harmful compounds and increase the supply of root-synthesized gibberellins and cytokinins to the leaves (Kozlowski 1997). Adventitious roots may allow species such as buttonbush and black willow to persist in early succes- sional environments characterized by fluctuating water levels and sedi- ment levels (Donovan et al. 1988).

Seedlings and plants that are totally submerged are the most susceptible to flood-related mortality. Photosynthesis is limited or nonexistent in times of complete submergence except for plants that are adapted to submerged conditions. Seedlings are particularly susceptible to flood stress because they generally have fewer reserves to draw upon during stressful conditions. Seedlings are also susceptible to sediment deposition and scouring. Kennedy and Krinard (1974) found that tree seedlings were killed in a flood whereas trees at least one year old survived.

Other factors that can influence a plant's resistance to flooding and saturated soil include its age and condition and the timing and duration

of the flood (Yeager 1949, Kozlowski 1997). Generally plants are less affected by flooding in the spring than during summer months when they are actively growing. Soil conditions can also have a significant effect on plant survival. Flooding can affect soils by altering soil structure, depleting oxygen, accumulating CO<sup>2</sup>, inducing anaerobic decomposition of organic matter and reducing iron and magnesium (Kozlowski 1997).

Harris and Marshall (1963) studied the drawdown and reflooding of wetlands in the Agassiz National Wildlife Refuge in northwestern Minnesota. After reflooding a wetland, they found that spike-rush (*Eleocharus palustris*) and soft-stem bulrush (*Scirpus validus*) were destroyed by flooding with over 15 inches of water. Common cattail (*Typha latifolia*) and sedges (*Carex* spp.) disappeared from continuously flooded areas in four to five years. Hybrid cattail (*Typha glauca*) survived in 24 inches of water through five years of flooding.

In another study investigating species' tolerance to flooding, Squires and Van der Valk (1992) found that awned sedge (*Carex atherodes*), white top-grass (*Scholochloa festucacea*), common reed grass (*Phragmites australis*), hybrid cattail (*Typha glauca*), hard-stem bulrush (*Scirpus acutus*), soft-stem bulrush (*Scirpus validus*) and alkali bulrush (*Scirpus maritimus*) survived for only one or two years in the flooded areas. They also found that some *Scirpus* species survived as tubers in the flooded areas.

Casanova and Brock (2000) investigated how depth, duration and frequency of flooding influence the establishment of wetland plant communities. The study was conducted by exposing seed bank samples to various water level treatments of depth, duration and frequency of inundation and comparing germination success. They found that depth was least important in influencing plant community composition while duration of individual flooding events was important in segregating plant communities. The highest biomass and species richness was found in pots that were never flooded and pots with short, frequent floods.

Prolonged flooding will most likely lead to plant mortality and a drawdown is generally necessary for revegetation. Most aquatic emergents need low water levels or complete removal of water from a basin for

8

seeds to germinate. The physiological processes necessary for germination require oxygen. Since flooding restricts oxygen availability, it also prevents germination from occurring (Kozlowski 1997). Linde (University of Michigan 1974) found that cattail (*Typha* spp.), sweet flag (*Acorus calamus*), burreed (*Sparganium* spp.), bulrush (*Scirpus* spp.), Walter's millet (*Echinochloa walteri*), smartweed (*Polygonum* spp.), willow (*Salix* spp.) and flatsedge (*Cyperus* spp.) germinated most successfully when mud flats were exposed by drawdowns. Harris and Marshall (1963) determined that it is desirable to induce drawdowns in wetlands with continuous standing water every five or six years to maintain emergent cover.



CUP PLANT



CARDINAL FLOWER



BLUE LOBELIA

**Low Water Levels** Prolonged low water levels can also stress plants within wetlands and stormwater systems. Most wetland plants are not well adapted to retaining moisture during dry conditions. In areas of open water that become dry, submergent species are generally replaced by emergent species. Emergent species have root systems such as large rhizomes and tubers that make them resistant to erosion by waves and ice as well as changes in water level. Submergents, however, devote most of their biomass to above-ground structures and cannot survive prolonged periods of drying (Wetzel



DRY POND

1983). In a study of aquatic vegetation of the St. Lawrence River, Hudon (1997) found that emergent vegetation was not affected by a one-year drop in water levels whereas submerged plants did not survive.

A variety of short-lived, early successional species are also well adapted to low water levels. Species that germinate quickly on exposed mud flats and are common in seasonally flooded basins include smartweed (*Polygonum* spp.), flatsedge (*Cyperus* spp.), spikerush (*Eleocharis* spp.) and beggartick (*Bidens cernua*). If water levels remain low, these species are generally replaced with perennial grasses and forbs.

**Flood Frequency** The effect of flood frequency and accompanying water fluctuations on plants has not been studied as thoroughly as that of flooding depth and duration, but it is believed to be a major plant stressor. Galatowitsch et al. (1997) found that hydrologic alterations by stormwater could reduce native perennial cover to the

11

same extent as cultivation in wet meadows. They discovered that less than 25 percent of the relative abundance of species in stormwaterimpacted wetlands is comprised of species that are characteristic of unimpacted sites. Examples of species not found\_in impacted wetlands included slender sedge (*Carex lasiocarpa*), Canada blue-joint grass (*Calamagrostis canadensis*) and prairie cord grass (*Spartina pectinata*). It is not known whether altered water chemistry, water fluctuations or both are responsible for the plant community changes observed. Reed canary grass (*Phalaris arundinacea*), an invasive species found in many impacted sites, may have an advantage because



WETLAND EDGE

it can grow in flooded conditions as well as in relatively dry soils. Husveth (1999) found that sedge meadow species were more prevalent in lowfluctuation wetlands than in highfluctuation wetlands while mudflat annual

species were more common to high-fluctuation wetlands than low-fluctuation wetlands.

In Montgomery County, Maryland, Shenot (1993) conducted a study to investigate the persistence of wetland species planted along the aquatic bench (a plateau, 3-18 inches deep, designed to optimize area for emergent species) of three stormwater ponds two to three years after planting. The ponds were planted with six to eight species of plants in single-species clusters with an average density of four plants per square meter. Two ponds were extended detention ponds with periodic inundation of 3-6 feet. Eighty-two percent of the planted species persisted in the ponds after two to three years. Factors believed to contribute to plant death included frequency and depth of inundation, nutrient-poor inorganic soils, steep bench slopes and predation by ducks. Thirty-five to 80 wetland plant species established as volunteers in each of the ponds (Shenot 1993, Schueler 2000).

| Relative Persistence of Eight Species of Wetland Plants on the |             |           |  |
|----------------------------------------------------------------|-------------|-----------|--|
| Aquatic Bench (Shenot, 1993)                                   |             |           |  |
|                                                                | Persistence | Spread    |  |
| Sweet flag (Acorus calamus)                                    | Good        | Limited   |  |
| Arrow arum ( <i>Peltandria virginia</i> )                      | Poor        | None      |  |
| Pickerelweed (Pontederia cordata)                              | Good        | Moderate  |  |
| Arrowhead (Saggitaria latifolia)                               | Excellent   | Excellent |  |
| Lizard's tail (Saururus cernus)                                | Poor        | None      |  |
| Common three square                                            | Good        | Excellent |  |
| (Scirpus americanus)                                           | 0000        | Execution |  |
| Soft-stem bulrush (Scirpus validus)                            | Excellent   | Good      |  |
| Wild Rice (Zizania aquatica)                                   | Excellent   | Limited   |  |
| (A douted from Schooler 2000)                                  |             |           |  |

(Adapted from Schueler 2000)

| Top 10 Volunteer Species Recorded at the Three   | e Ponds (Shenot 1993)    |
|--------------------------------------------------|--------------------------|
| Various exotic grasses (Graminea)                | 75%                      |
| Common rush (Juncus effusus)                     | 55%                      |
| Fox sedge (Carex vulpinoidea)                    | 33%                      |
| Other sedges (Carex spp.)                        | 33%                      |
| Smartweeds (Polygonum spp.)                      | 33%                      |
| Mostly many-flowered aster (Aster spp.)          | 30%                      |
| False nettle (Boehmeria cylindrica)              | 30%                      |
| Rice cutgrass (Leersia oryzoides)                | 30%                      |
| Bugleweed (Lycopus virginicus)                   | 30%                      |
| Spike rush ( <i>Eleocharis</i> sp.)              | 22%                      |
| Defined as percentage of stations where the spe  | cies was recorded as one |
| of the five most numerically dominated species a | t the station. N=40      |
|                                                  |                          |

(Adapted from Schueler 2000)

As was discussed earlier, flooding tends to limit root growth, and in some cases specialized water roots are developed. It is likely that as plants dryquickly after flooding, their root systems may not be able to supply sufficient water. A study on the effects of water fluctuation on trees, including black gum (Nyssa sylvatica), common baldcypress (Taxodium distichum) and water tupelo (Nyssa aquatica), in a swamp in the southeastern United States showed that weekly changes in the growth of the three species were significantly affected by changes in water levels. It is believed that the reduced growth resulted from frequent restructuring of root systems in response to alternately flooded

and drained conditions. In sites that were permanently flooded or saturated, limits of tree growth was not observed (Keeland and Sharitz 1997).



SMARTWEED

Kozlowski (1997) states that "Because root growth typically is reduced more than stem growth, the root/shoot ratio is decreased. When the flood water drains away, the previously flooded plants may be less tolerant of drought because absorption of water by their small root systems cannot adequately replenish losses due to transpiration."

Although water fluctuations can have detrimental effects on plants, it is also important to recognize that the fluctuation of water levels is a natural phenomenon in many basins, particularly where there are steep slopes surrounding wetlands. In some cases, water fluctuations can help certain community types, such as floodplain forests, that are adapted to such conditions. The fluctuations may decrease weed competition and aid in seed dispersal.

Flooding frequency has been shown to influence plant diversity in some situations. Pollock et al. (1998) studied 16 wetland sites in Alaska and found that "species-rich sites had low to intermediate levels of productivity and intermediate flood frequencies, and species-poor sites had very low or high flood frequency and low productivity." This corresponds with Huston's (1979) dynamic-equilibrium model of species diversity, which predicts that the highest diversity will be found where there are intermediate levels of disturbance and low diversity will be found where there are high or low levels of disturbance.

A study in northern Minnesota (Wilcox and Meeker 1990) also demonstrated that high diversity can be found with intermediate levels of disturbance. Two regulated lakes and one unregulated lake were studied to determine the effects of water fluctuations on aquatic macrophytes. It was found that the unregulated lake, which fluctuated about 1.6 m annually, had structurally diverse plant communities at all depths. In Rainy Lake, which had reduced water fluctuations (1.1 m annually), few species were present along transects that were never dewatered. In Namakan Lake, which had increased water fluctuations (2.7 m annually), rosette and mat-forming species dominated transects where drawdown occurred in early winter and disturbance resulted from ice formation in the sediments.

Stormwater MPs, such as wet and dry swales, filter strips and rain water gardens, can be important for treating and slowing water flow before it reaches ponds and wetlands. Appropriate design is important to ensure that flooding and water fluctuation will not be severe. The outlets should be designed so as to endure natural fluctuations during storm events. Multiple wetland cells and gentle side slopes can add to species diversity by dispersing water, decreasing water fluctuations and providing a wide range of available habitat for wetland species. A Vermont study (Occoquan Watershed Monitoring Lab et al. 1990) demonstrated that multiple pond systems can promote diversity (18 species) in wetland BMPs. Common rush (Juncus effusus), spikerush (Eleocharis obtusa) and rice-cut grass (Leersia oryzoides) dominated the 0-to-6-inch zone; spikerush (Eleocharis spp.) and rice-cut grass dominated the 6-to-12-inch zone; water purslane (Ludwigia palustrus) and duckweed (Lemna spp.) dominated the 12-to-18-inch zone; and cattail (Typha spp.), spikerush (Eleocharis spp.), yellow water lily (Nuphar adventa) and white water lily (Nymphea odorata) dominated the 18-to-30-inch zone.

For more information on the effect of hydrology on vegetation, see appendix 2 for an investigation of three stormwater projects in the Twin Cities area. Wave Energy On large water bodies, waves can have a significant influence on plant growth. In a study of the effects of wave action at Axe Lake in Ontario, Keddy (1983) found that "waves may have direct effects on vegetation; for example, through removing biomass, uprooting seedlings, and transporting propagules." He observed that "waves may also have many indirect effects through the erosion, transport and deposition of sediment." At Axe Lake, Keddy found that "Large leafy species on sheltered shores tended to be replaced by small creeping or rosette species on exposed shores." Of the emersed species, bulrushes (Scirpus spp.) tend to do best in exposed situations. If emersed plants can become established, their presence may reduce wave and current action and permit a greater variety of plants to establish (University of Michigan 1974). Stormwater MPs, such as wet ponds, generally are not large enough to be significantly affected by wave action, but waves may contribute to plant stress. Wave break structures are often necessary on large water bodies to ensure planting success.

**Sediment Loads** Wetlands often receive sediment and nutrients from runoff (Brown 1985) and this is the case in stormwater detention basins and other types of stormwater systems. A study of beaked sedge (*Carex rostrata*) and common fox sedge (*Carex stipata*) in Washington State (Ewing 1995) investigated the effect of sedimentation and showed that sediment deposition can depress plant productivity. Other studies have shown similar results. Van der Valk et al. (1981) found that with 15 cm of sediment, root density decreased by 37 and 49 percent in subsequent years in freshwater lowland wetlands in Alaska.

It has also been demonstrated that the accumulation of sediment negatively affects seed germination. Jurik et al. (1994) found that sediment loads as low as 0.25 cm significantly decreased the number of species that germinated from seedbank samples. The addition of sediment had the least effect on species with large seeds. **Pollutants and Toxins** Plants vary greatly in their ability to assimilate toxins and pollutants into their stems and roots. With recent interest in phytoremediation and wastewater cleansing, an increasing number of species are being investigated to determine their ability to assimilate pollutants and toxins. A study by the City of Seattle (1993) investigated the ability of five wetland species to take up zinc, lead and total petroleum hydrocarbons (TPH) into plant tissue. The species chosen for the study were common cattail (*Typha latifolia*), water flag (*Iris pseudacorus*), burreed (*Sparganium* spp.), blunt-spikerush



GREEN BULRUSH

(Eleocharis ovata) and hardstem bulrush (Scirpus acutus). Of the five species, cattail was the most efficient at taking up pollutants, but concentrations of lead, zinc and TPH were highest in burreed tissue. Cattail was more vigorous and therefore had a higher pollutant uptake per area of cover. Spike rush also had high pollution concentrations within plant tissue. There is concern that wetland species that assimilate pollutants may pose a risk to wildlife that use them as a food source. This study found that concentrations of TPH, zinc and lead were higher in the roots than in the shoots, which may help decrease the risk to most wildlife species.

Just as plant species vary in their ability to assimilate toxins and pollutants, they also vary in their tolerance to these materials (Stockdale 1991). Snowden and Wheeler (1993) examined 44 fen species in solution culture to determine their tolerance to iron. The plants varied greatly in their tolerance, with species such as common rush (*Juncus effusus*) and water-flag (*Iris pseudacorus*) being very tolerant, marsh marigold (*Caltha palustris*) and reed canary grass (*Phalaris arundinacea*) being semi-tolerant, and green sorrel (*Rumex acetosa*) and queen of the meadow (*Filipendula ulmaria*) being very sensitive.

Individual species can be affected by some chemicals and unaffected by others. Dushenko et al. (1995) investigated the effect of arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold mine effluent and found that broad-leaved cattail (*Typha latifolia*)



MARSH MILKWEED

responded with decreased stand height, necrosis of leaf tips and reduced micronutrient concentrations of copper, manganese and zinc in root tissues. A study in China (Ye et al. 1998) investigating the tolerance of broadleaved cattail to zinc ( $1.0 \mu g/ml$ ), lead ( $10.0 \mu g/ml$ ) and cadmium ( $0.2 \mu g/ml$ ) accumulation found that this species was able to tolerate these metals for 48 to 72 days.

**Nutrients** As nutrient inputs to wetlands increase, nutrients can be stored in surface litter, plants or soils. However, the capacity of a wetland to retain a nutrient such as phosphorus can become saturated over time and release of the nutrient can result. Nutrient inputs can have a direct effect on vegetation. Species like reed canary grass (Phalaris arundinacea) that thrive in nutrient-rich conditions can displace species that are adapted to conditions of lower nutrient availability (Horner et al. 1988). A study of a wastewater-treatment wetland showed that plants near the discharge point had greater biomass, were taller and had higher concentrations of phosphorus in their tissues (Tilton et al. 1979). Athanas and Stevenson (1991) compared two stormwater wetlands in Maryland. They found that the system that received higher amounts of sediment and nutrients had higher diversity (cattails, rushes, sedges and boneset) than the other system (cattails and common reeds), which received less sediment and nutrients. A study in Vermont (Schwartz 1985) investigated the effect of sewage on wetland vegetation. Nitrate levels of 0.328 mg/L and phosphate levels of 2.53 mg/L from raw sewage resulted in unchanged growth of cattail (Typha spp.). Rushes (Scirpus spp.), giant burreed (Sparganium eurycarpum), lesser duckweed (Lemna minor)

and coontail (*Ceratophyllum demersum*) were positively affected by the nutrients, while elodea (*Elodea canadensis*) and pondweeds (*Potomogeton* spp.) were negatively affected.



FOX SEDGE

There is concern that wetland treatment systems in northern climates will not function effectively during the winter months due to inactivity of bacteria and plant material. Research being conducted at Montana State University by Stein and Hook is showing that systems containing plants can function effectively in cold climates. The researchers are finding that wetland systems with water temperatures of 36 degrees F can effectively remove nitrogen and organic carbon from water. Plant debris and snow cover helps keep water temperatures around 36 degrees. In addition, water treatment in cold temperatures improves significantly

when plants are a part of the system. This differs from research conducted in southern climates that shows that bacteria play the largest role in cleaning water and plants play a less important role. Plants that the Montana State researchers are finding most effective are sedges and bulrushes. These species are much more effective at treating water during the winter than cattails, which are relatively inactive (Flaherty 2002).

Mowing and removing above-ground growth of cattails, grasses and other species used in stormwater MPs is one method of removing nutrients. The removed biomass can be composted or possibly incinerated.

**Salt** Roadways and parking lots in the Midwest are salted heavily during winter months. During melting and rainfall events, salt can be washed into a stormwater system. Biesboer and Jacobson (1994) studied the role of road salt in limiting germination of warm-season grasses. They found that salt concentrations were highest within the

first 3 feet from the road and then rapidly declined within 30 feet. They found that most warm- and cool-season grasses could germinate and grow beyond 10 feet from a road without experiencing stress. They state that warm-season grasses, such as blue grama (*Bouteloua gracilis*) and buffalo grass (*Buchloe dactyloides*), can handle high salinities. Warm-season grasses also have advantages over cool-season grasses because they germinate later in the season, after spring rains reduce concentrations of sodium chloride in the soil (Ohrel 2000).

Another study (Isabelle et al. 1987) demonstrated that salt in roadside snowmelt can affect species composition and biomass of wetland vegetation. In the study, seed of five wetland species was planted in greenhouse plots and exposed to snowmelt/tapwater mixtures containing 0, 20 and 100 percent snowmelt each day. After



CULVER'S ROOT

a month the seedlings were harvested, and it was found that the number of germinating seeds was inversely proportional to snowmelt salt concentration. Two species, purple loosestrife (*Lythrum salicaria*) and common cattail (*Typha latifolia*), germinated when exposed to undiluted snowmelt while other species (*Aster umbellatus, Dulichium arundinaceum* and *Scirpus cyperinus*) did not. Both purple loosestrife and cattails dominate many urban wetland and stormwater systems and their ability to germinate under high-salt conditions may contribute to their dominance.

Wilcox (1986) observed that a bog in Indiana that was adjacent to an uncovered salt storage pile for 10 years was prone to invasion by non-bog species such as narrow-leaf cattail (*Typha angustifolia*). Many tamarack (*Larix* 

*laricina*) and many species of sphagnum moss (*Sphagnum* spp.) were killed by the salt. The author noted that it is probable that red maple

(Acer rubrum), eastern white pine (*Pinus strobus*), leather-leaf (*Chamaedaphne calyculata*), holly (*Ilex spp.*) and highbush blueberry (*Vaccinium corymbosum*) were also affected by the salt. Other than cattails, species that did not appear to be affected by salt included duckweed (*Lemna spp.*), arrowhead (*Sagittaria spp.*) and bladderwort (*Utricularia spp.*).

**Turbidity** While flooding is a stress to many plant species, turbid water can compound the problem. Turbidity tends to reduce the amount of photosynthesis that can be conducted by a plant by limiting sunlight. Shaw (2002) observed that in nursery beds, Tussock sedge (*Carex stricta*) fully submerged in turbid water declined quickly while plants that still had some leaves above the surface of the water continued to increase their above-ground growth. It was believed to be the combination of flooding and turbid water that caused the plants to decline.

Loading of sediments can directly increase turbidity. Street cleaning and erosion control can effectively decrease the amount of sediment entering stormwater systems.

**Erosion** Erosive action around roots is another potential stress to plants in stormwater systems. Erosion naturally occurs in floodplains but may also occur in stormwater systems that are not adequately vegetated. Deep-rooted, native, prairie species and wetland shrubs do a good job of stabilizing buffer areas around ponds and wetlands. Aggressive grasses, such as prairie cord grass, big bluestem, Indian grass and switch grass, as well as many native shrub species are particularly well suited for this use. Cover crops such as oats, winter wheat and annual ryegrass are also useful in controlling erosion. Cover crops germinate quickly and hold the soil while the slower-developing native grasses become established. Since cover crops germinate quickly, they are good indicators of the overall success of plantings. If cover crops do not germinate in an area, there is a good chance that native species that were planted will need to be re-seeded.

**Invasive species** Flooding can influence plant competition by physically or physiologically damaging plants and by changing the physical and chemical environment of soils (Pollock et al. 1998). Some invasive

species seem to thrive under conditions of flooding and fluctuating water levels. Cooke et al. (1989) found that invasive species such as reed canary grass (*Phalaris arundinacea*) and purple loosestrife (*Lythrum salicaria*) can come to dominate wetlands that receive urban stormwater. Salt tolerance also gives an advantage to some invasive species, and the combination of these factors may explain why so many urban wetlands and stormwater systems are dominated by invasive plants.

While few native plants can compete with these invasive species,



PURPLE LOOSESTRIFE

some aggressive native species can live amongst them. For example, cup plant (Silphium perfoliatum), blue vervain (Verbena hastata) and green bulrush (Schoenoplectus atrovirens) can be found in ditches among reed canary grass (Phalaris arundinacea). Seed of fast-establishing natives can be used also to stabilize and compete in areas where reed canary grass is a significant threat. Ultimately, management of native plantings is important to limit the growth of invasive plants.

**Herbivores** Wild geese and other herbivores, such as deer, rabbits, muskrat, beavers, mice and carp, are a significant threat to new plantings. Geese are particularly attracted to seedling plants and have been know to completely destroy projects. Animal exclosures are often necessary to stop herbivores. Exclosures constructed to prevent geese from grazing newly planted areas should also help to prevent grazing by deer, rabbits, muskrat, beavers and carp. It is difficult to select plants that herbivores will not eat, so exclosures are generally the best option.

#### PLANT CONSIDERATIONS AND SPECIES FOR STORMWATER MANAGEMENT PRACTICES

Root systems of species covered in this guidebook vary greatly in their depth and density/biomass



Vegetation is often grouped into the categories of trees and shrubs, grasses/ sedges/rushes and forbs/ferns. Each of these categories of vegetation has its own benefits and limitations for stormwater projects.

#### **Trees and Shrubs**

#### **Benefits**

- Trees and shrubs, particularly willow species, have a significant influence on evapotranspiration and a capacity for nutrient uptake.
- Roots aid infiltration by acting as pathways for water flow.
- Fibrous roots absorb large amounts of water.
- Trees and shrubs are useful for bank stabilization and can often be planted as cuttings. Deeprooted species are particularly useful for anchoring soil to steep slopes.
- Trees provide vertical structure in the landscape.
- Trees provide important habitat for many wildlife species.
- Trees provide important habitat for many wildlife species.

#### Limitations

- Debris from trees may block outlets.
- Trees cannot be used in stormwater MPs where sediment will be excavated.
- Trees can inhibit the growth of prairie species.







#### Grasses, Sedges and Rushes Benefits

- Roots of prairie grasses can extend deep into the ground and aid in infiltration and evapotranspiration.
- Dense root networks stabilize soil and minimize erosion.
- Wetland species, particularly broad-leaved sedges and bulrushes, generally have shallow roots but aid in evapotranspiration.
- Grasses generally have many stems and produce thatch that slows water flow and facilitates filtration, making them well suited for filter strips.
- Many grasses, sedges and rushes are efficient at nutrient uptake.
- Native grasses, sedges and rushes add winter interest to the landscape and have high wildlife value.

#### Limitations

• In projects with high flow rates, grasses must be mowed often to most efficiently decrease stormwater velocity. Mown clump grasses will not produce seed.



#### Forbs and Ferns

#### Benefits

- Roots of prairie forbs can extend deep into the ground and aid in infiltration and evapotranspiration.
- Wetland forbs, particularly broad-leaved species, generally have shallow roots but aid in evapo transpiration.
- Native forbs add aesthetic appeal to the land scape and have high wildlife value.

#### Limitations

• Forbs generally have fewer basal stems than grasses and may not filter stormwater as efficiently.



#### STORMWATER MANAGEMENT PRACTICES

The types of stormwater management practices (MPs) are grouped into the categories of retention, detention, infiltration, wetlands and filtration. The following information provides a brief description of the types of stormwater MPs and planting considerations for each.

#### Retention



Retention (extended detention) systems are designed to utilize the retention of water to improve water quality. Retention systems covered in this guidebook include wet ponds and extended storage ponds.

Wet Ponds and Extended Storage Ponds. Wet ponds are designed to retain a permanent pool of water. The primary function of wet ponds is sedimentation, which removes metals, nutrients, sediment and organics from stormwater. Wet ponds are suitable for sites with high nutrient loads. Benches are often incorporated into wet ponds to add areas for plant growth which aid in sedimentation, evapotranspiration and providing wildlife habitat. Vegetation also acts as a barrier to keep children away from open water areas (MPCA 2000). Extended storage ponds are similar to wet ponds but are generally designed to provide temporary storage of stormwater. As a result, extended storage ponds are designed to fill quickly and then slowly decrease in water level (Barr 2001). Since both wet and extended storage ponds may experience significant water fluctuations after storms, plants must be chosen that can handle these conditions. Many urban wetlands and lakes that receive stormwater experience environmental conditions similar to wet ponds and many of the species in the following tables would be suitable for their planting.

Floodplain species may be well suited for extended storage ponds that flood and then become dry. Plant species suitable for ponds can be grouped according to zones that change with elevation. These zones are often referred to as "plant communities." It is useful to think about plantings in terms of plant communities because plant communities are composed of species adapted to growing together.



| ZONE | PLANT COMMUNITY | HYDROLOGY                                                                                       |
|------|-----------------|-------------------------------------------------------------------------------------------------|
| 1    | Submergent zone | 1.5-6 feet of water                                                                             |
| 2    | Emergent zone   | 0-18 inches of water                                                                            |
| 3    | Wet meadow zone | Permanent moisture                                                                              |
| 4    | Floodplain zone | Flooded during snowmelt and large storms                                                        |
| 5    | Upland zone     | Seldom or never inundated<br>(the upland zone includes prairie<br>and forest plant communities) |

**Zone 1 (Submergent zone)** – The submergent zone is found in areas of 3-6 feet of water in wet ponds. Submergent vegetation makes up this zone because emergent vegetation generally does not grow deeper than 3 feet. Submergent species may float free in the water column or may root in the pool bottom and have stems and leaves that generally stay under water. Submergent species are important for wildlife habitat and

pollutant removal, especially nitrates and phosphorus. Submergent species are not readily available from native plant nurseries and can be difficult to plant. Many submergent species establish on their own (Ogle and Hoag 2000).

**Zone 2 (Emergent zone)** – The emergent zone of a wet pond is generally 0 to 18 inches deep. It is often designed as benches within ponds to optimize the area for emergent plants. Emergent plants are important for wildlife and evapotranspiration. They also provide habitat for phytoplankton, which play an important role in nutrient removal (Ogle and Hoag 2000). A wide variety of wetland species are adapted to the emergent zone. However, large fluctuations in water level and pollutants within wet ponds may limit the number of species.

**Zone 3 (Wet meadow zone)** – The wet meadow zone is a constantly moist area that can become inundated. The transition area between open water and the shoreline is prone to erosion. Therefore, it is an important area for plant establishment. In addition to wet-meadow grasses, sedges, flowers and shrubs, such as dogwoods, willows, buttonbush and chokeberry, are well suited to this zone.

**Zone 4 (Floodplain zone)** – The floodplain zone is normally dry but may flood during snowmelt and after large storms. Floodplain zones are generally flat terraces and are common along rivers and streams. If a wet pond has a steep side slope, it may go directly from zone 3 (wet meadow zone) to zone 5 (upland zone) without having a floodplain zone. Floodplain species must be adapted to extremes in hydrology; they may be inundated for long periods in the spring and be dry during the summer. The ability of floodplain species to handle extremes in hydrology make them well suited to the edges of wet ponds and detention ponds.

**Zone 5 (Upland zone)** – The upland zone is seldom or never inundated. A wide variety of species are well adapted to the upland zone and their selection will depend on the site conditions.

| Zone 1 Submergent zone                                                             | 3-6 feet of water        |  |
|------------------------------------------------------------------------------------|--------------------------|--|
| Note: Submergent species are not covered in depth in this guidebook, but desirable |                          |  |
| species include the following:                                                     |                          |  |
| Scientific Name                                                                    | Common Name              |  |
| Forbs and Ferns                                                                    |                          |  |
| Brasenia schreberi                                                                 | Water shield             |  |
| Ceratophyllum demersum                                                             | Coontail                 |  |
| Elodea canadensis                                                                  | Elodea                   |  |
| Lemna trisulca                                                                     | Lesser duckweed          |  |
| Myriophyllum exalbesieus                                                           | Water milfoil            |  |
| Nelumbo lutea                                                                      | Lotus                    |  |
| Nuphar lutea                                                                       | Yellow water-lily        |  |
| Nymphaea odorata                                                                   | White water-lily         |  |
| Potamogeton illinoensis                                                            | Illinois pondweed        |  |
| Potamogeton natans                                                                 | Floating-leaved pondweed |  |
| Potamogeton pectinatus                                                             | Sago pondweed            |  |
| Ranunculus flabellaris                                                             | Yellow water crowfoot    |  |
| Spirodela polyrrhiza                                                               | Giant duckweed           |  |
| Urticularia vulgaris                                                               | Bladderwort              |  |
| Vallisneria americana                                                              | Wild celery              |  |
| Woffia columbiana                                                                  | Watermeal                |  |

| Zone 2 Emergent zone       | 0-18 inches of water  |          |
|----------------------------|-----------------------|----------|
| Scientific Name            | Common Name           | See Page |
| Trees and Shrubs           |                       |          |
| Cephalanthus occidentalis  | Buttonbush            | 160      |
| Forbs and Ferns            |                       |          |
| Acorus calamus             | Sweet flag            | 78       |
| Alisma trivale             | Water plantain        | 82       |
| Caltha palustris           | Marsh marigold        | 132      |
| Polygonum amphibium        | Water smartweed       | 250      |
| Pontederia cordata         | Pickerelweed          | 252      |
| Sagittaria latifolia       | Broadleaved arrowhead | 270      |
| Sparganium eurycarpum      | Giant burreed         | 310      |
| Typha latifolia            | Broadleaved cattail   | 322      |
| Grasses, Sedges and Rushes |                       |          |
| Carex aquatilis            | Water sedge           | 134      |
| Carex lacustris            | Lake sedge            | 144      |
| Carex stricta              | Tussock sedge         | 154      |
| Juncus balticus            | Baltic rush           | 210      |
| Juncus effusus             | Soft rush             | 212      |
| Scirpus acutus             | Hardstem bulrush      | 282      |
| Scirpus fluviatilis        | River bulrush         | 288      |

| Scirpus pungens | Three-square bulrush | 290 |
|-----------------|----------------------|-----|
| Scirpus validus | Soft-stem bulrush    | 292 |

| Zone 3 Wet meadow zone permanent moistr |                        | moisture |
|-----------------------------------------|------------------------|----------|
| Scientific Name                         | Common Name            | See Page |
| Trees and Shrubs                        |                        |          |
| Amorpha fruticosa                       | Indigo bush            | 88       |
| Salix nigra                             | Black willow           | 276      |
| Sambucus pubens                         | Red-berried elder      | 278      |
| Forbs and Ferns                         |                        |          |
| Agastache foeniculum                    | Giant hyssop           | 80       |
| Anemone canadensis                      | Canada anemone         | 92       |
| Angelica atropurpurea                   | Angelica               | 94       |
| Asclepias incarnata                     | Marsh milkweed         | 102      |
| Aster lanceolatus (simplex)             | Panicle aster          | 108      |
| Aster lucidulus                         | Swamp aster            | 110      |
| Aster novae-angliae                     | New England aster      | 114      |
| Aster puniceus                          | Red-stemmed aster      | 118      |
| Bidens cernua                           | Beggarsticks           | 124      |
| Boltonia asteroides                     | Boltonia               | 126      |
| Chelone glabra                          | Turtlehead             | 162      |
| Eryngium yuccifolium                    | Rattlesnake master     | 178      |
| Eupatorium maculatum                    | Joe-pye-weed           | 180      |
| Eupatorium perfoliatum                  | Boneset                | 182      |
| Euthanmia graminifolia                  | Grass-leaved goldenrod | 184      |
| Gentiana andrewsii                      | Bottle gentian         | 192      |
| Helenium autumnale                      | Sneezeweed             | 198      |
| Impatiens capensis                      | Jewelweed              | 206      |
| Iris versicolor                         | Blueflag               | 208      |
| Liatris ligulistylis                    | Meadow blazingstar     | 220      |
| Liatris pychnostachya                   | Prairie blazingstar    | 222      |
| Lilium superbum                         | Turk's-cap lily        | 224      |
| Lobelia cardinalis                      | Cardinal flower        | 226      |
| Lobelia siphilitica                     | Blue lobelia           | 228      |
| Lysimachia thrysiflora                  | Tufted loosestrife     | 230      |
| Monarda fistulosa                       | Wild bergamot          | 236      |
| Onoclea sensibilis                      | Sensitive fern         | 238      |
| Osmunda regalis                         | Royal fern             | 240      |
| Physostegia virginiana                  | Obedient plant         | 248      |
| Potentilla palustris                    | Marsh cinquefoil       | 258      |
| Pycnanthemum virginianum                | Mountain mint          | 262      |
| Scutterlaria lateriflora                | Mad-dog skullcap       | 294      |
| Silphium perfoliatum                    | Cup plant              | 298      |
| Spiraea alba                            | Meadowsweet            | 314      |

| Zone 3 Wet meadow zone <i>Cont.</i> permanent moisture |                         |          |
|--------------------------------------------------------|-------------------------|----------|
| Scientific Name                                        | Common Name             | See Page |
| Thalictrum dasycarpum                                  | Tall meadowrue          | 318      |
| Verbena hastata                                        | Blue vervain            | 326      |
| Vernonia fasciculata                                   | Ironweed                | 328      |
| Veronicastrum virginicum                               | Culver's root           | 330      |
| Grasses, Sedges and Rushes                             | 1                       |          |
| Andropogon gerardii                                    | Big bluestem            | 90       |
| Bromus ciliatus                                        | Fringed brome           | 128      |
| Calamagrostis canadensis                               | Canada blue-joint grass | 130      |
| Carex bebbii                                           | Bebb's sedge            | 136      |
| Carex comosa                                           | Bottlebrush sedge       | 138      |
| Carex crinita                                          | Caterpillar sedge       | 140      |
| Carex hystericina                                      | Porcupine sedge         | 142      |
| Carex languinosa                                       | Wooly sedge             | 146      |
| Carex lasiocarpa                                       | Wooly needle sedge      | 148      |
| Carex retrorsa                                         | Retrorse sedge          | 150      |
| Carex stipata                                          | Awl-fruited sedge       | 152      |
| Carex vulpinoidea                                      | Fox sedge               | 156      |
| Eleocharis obtusa                                      | Blunt spikerush         | 170      |
| Equisetum fluviatile                                   | Horsetail               | 176      |
| Glyceria grandis                                       | Giant manna grass       | 194      |
| Glyceria striata                                       | Fowl manna grass        | 196      |
| Juncus balticus                                        | Baltic rush             | 210      |
| Juncus effusus                                         | Soft rush               | 212      |
| Juncus torreyi                                         | Torrey rush             | 214      |
| Leersia oryzoides                                      | Rice-cut grass          | 218      |
| Panicum virgatum                                       | Switchgrass             | 242      |
| Scirpus atrovirens                                     | Green bulrush           | 284      |
| Scirpus cyperinus                                      | Woolgrass               | 286      |
| Scirpus fluviatilis                                    | River bulrush           | 288      |
| Scirpus pungens                                        | Three-square bulrush    | 290      |
| Scirpus validus                                        | Soft-stem bulrush       | 292      |
| Spartina pectinata                                     | Prairie cord grass      | 312      |

| Zone 4 Floodplain zone     | Flooded during snowmelt and large storms |          |
|----------------------------|------------------------------------------|----------|
| Scientific Name            | Common Name                              | See Page |
| Trees and Shrubs           |                                          |          |
| Acer saccharinum           | Silver maple                             | 76       |
| Alnus incana               | Speckled alder                           | 86       |
| Amorpha fruticosa          | Indigo bush                              | 88       |
| Aronia melanocarpa         | Black chokeberry                         | 98       |
| Betula nigra               | River birch                              | 122      |
| Celtis occidentalis        | Hackberry                                | 158      |
| Cephalanthus occidentalis  | Buttonbush                               | 160      |
| Cornus amomum              | Silky dogwood                            | 164      |
| Cornus sericea             | Red-osier dogwood                        | 168      |
| Fraxinus nigra             | Black ash                                | 186      |
| Fraxinus pennsylvanica     | Green ash                                | 188      |
| Physocarpus opulifolius    | Ninebark                                 | 246      |
| Populus deltoides          | Eastern cottonwood                       | 254      |
| Quercus bicolor            | Swamp white oak                          | 264      |
| Salix discolor             | Pussy willow                             | 272      |
| Salix exigua               | Sandbar willow                           | 274      |
| Salix nigra                | Black willow                             | 276      |
| Sambucus pubens            | Red-berried elder                        | 278      |
| Spiraea alba               | Meadowsweet                              | 314      |
| Viburnum lentago           | Nannyberry                               | 332      |
| Viburnum trilobum          | High bush cranberry                      | 334      |
| Forbs and Ferns            |                                          |          |
| Anemone canadensis         | Canada anemone                           | 92       |
| Aster lucidulus            | Swamp aster                              | 110      |
| Aster puniceus             | Red-stemmed aster                        | 118      |
| Boltonia asteroides        | Boltonia                                 | 126      |
| Impatiens capensis         | Jewelweed                                | 206      |
| Lobelia cardinalis         | Cardinal flower                          | 226      |
| Lobelia siphilitica        | Blue lobelia                             | 228      |
| Lysimachia thrysiflora     | Tufted loosestrife                       | 230      |
| Physostegia virginiana     | Obedient plant                           | 248      |
| Potentilla palustris       | Marsh cinquefoil                         | 258      |
| Scutterlaria lateriflora   | Mad-dog skullcap                         | 294      |
| Silphium perfoliatum       | Cup plant                                | 298      |
| Symplocarpus foetidus      | Skunk cabbage                            | 316      |
| Vernonia fasciculata       | Ironweed                                 | 328      |
| Grasses, Sedges and Rushes |                                          |          |
| Carex comosa               | Bottlebrush sedge                        | 138      |
| Elymus virginicus          | Virginia wild rye                        | 172      |
| Leersia oryzoides          | Rice-cut grass                           | 218      |
| Panicum virgatum           | Switchgrass                              | 242      |

| Zone 4 Floodplain zone <i>Cont</i> . | Flooded during snowmelt and large storms |          |
|--------------------------------------|------------------------------------------|----------|
| Scientific Name                      | Common Name                              | See Page |
| Scirpus atrovirens                   | Green bulrush                            | 284      |
| Spartina pectinata                   | Prairie cord grass                       | 312      |

| Zone 5 Upland zone          | Seldom or never inundated |          |
|-----------------------------|---------------------------|----------|
| Scientific Name             | Common Name               | See Page |
| Trees and Shrubs            |                           |          |
| Cornus racemosa             | Gray dogwood              | 166      |
| Populus tremuloides         | Quaking aspen             | 256      |
| Quercus bicolor             | Swamp white oak           | 264      |
| Viburnum lentago            | Nannyberry                | 332      |
| Viburnum trilobum           | High bush cranberry       | 334      |
| Forbs and Ferns             |                           |          |
| Agastache foeniculum        | Giant hyssop              | 80       |
| Allium stellatum            | Prairie wild onion        | 84       |
| Arisaema triphyllum         | Jack-in-the-pulpit        | 96       |
| Artemisia ludoviciana       | Prairie sage              | 100      |
| Asclepias tuberosa          | Butterfly milkweed        | 104      |
| Aster laevis                | Smooth aster              | 106      |
| Aster lanceolatus (simplex) | Panicled aster            | 108      |
| Aster macrophyllus          | Bigleaf aster             | 112      |
| Aster pilosus               | Frost aster               | 116      |
| Athyrium filix-femina       | Lady fern                 | 120      |
| Boltonia asteroides         | Boltonia                  | 126      |
| Epilobium angustifolium     | Fireweed                  | 174      |
| Galium boreale              | Northern bedstraw         | 190      |
| Helianthus grosseserratus   | Sawtooth sunflower        | 200      |
| Heuchera richardsonii       | Prairie alumroot          | 202      |
| Monarda fistulosa           | Wild bergamot             | 236      |
| Onoclea sensibilis          | Sensitive fern            | 238      |
| Potentilla palustris        | Marsh cinquefoil          | 258      |
| Pteridium aquilinum         | Bracken fern              | 260      |
| Pycnanthemum virginianum    | Mountain mint             | 262      |
| Ratibida pinnata            | Yellow coneflower         | 266      |
| Rudbeckia subtomentosa      | Brown-eyed Susan          | 268      |
| Smilacina racemosa          | False Solomon's seal      | 300      |
| Solidago flexicaulis        | Zig-zag goldenrod         | 302      |
| Solidago riddellii          | Riddell's goldenrod       | 304      |
| Solidago rigida             | Stiff goldenrod           | 306      |
| Tradescantia ohiensis       | Ohio spiderwort           | 320      |
| Veronicastrum virginicum    | Culver's root             | 330      |

| Zizia aurea                | Golden alexanders | 336 |
|----------------------------|-------------------|-----|
| Grasses, Sedges and Rushes |                   |     |
| Andropogon gerardii        | Big bluestem      | 90  |
| Panicum virgatum           | Switchgrass       | 242 |
| Schizachyrium scoparium    | Little bluestem   | 280 |
| Sorghastrum nutans         | Indian grass      | 308 |



MEADOW BLAZINGSTAR

#### Detention



Detention systems are designed to filter and slow stormwater. Detention systems covered in this guide included dry ponds and dry swales/ditches.

**Dry Pond.** Dry ponds are generally at the end of storm sewer systems and are designed to reduce stormwater velocity. Dry ponds typically empty completely between storms so they provide limited pollution removal (Barr 2001). Plants in dry ponds must be able to handle flooding and subsequent dry conditions. Only a few species are well suited to dry ponds. However, several floodplain-forest and wet-prairie species are adapted to these conditions.

| Dry Pond                    |                        |          |
|-----------------------------|------------------------|----------|
| Scientific Name             | Common Name            | See Page |
| Trees and Shrubs            |                        |          |
| Amorpha fruticosa           | Indigo bush            | 88       |
| Aronia melanocarpa          | Black chokeberry       | 98       |
| Betula nigra                | River birch            | 122      |
| Cephalanthus occidentalis   | Buttonbush             | 160      |
| Cornus racemosa             | Gray dogwood           | 166      |
| Cornus sericea              | Red-osier dogwood      | 168      |
| Quercus bicolor             | Swamp white oak        | 264      |
| Salix discolor              | Pussy willow           | 272      |
| Salix exigua                | Sandbar willow         | 274      |
| Spiraea alba                | Meadowsweet            | 314      |
| Forbs and Ferns             |                        |          |
| Aster lanceolatum (simplex) | Panicle aster          | 108      |
| Aster lucidulus             | Swamp aster            | 110      |
| Aster puniceus              | Red-stemmed aster      | 118      |
| Equisetum fluviatile        | Horsetail              | 176      |
| Euthanmia graminifolia      | Grass-leaved goldenrod | 184      |
| Helenium autumnale          | Sneezeweed             | 198      |
| Liatris pychnostachya       | Prairie blazingstar    | 222      |
| Lobelia siphilitica         | Blue lobelia           | 228      |

| Monarda fistulosa          | Wild bergamot      | 236 |
|----------------------------|--------------------|-----|
| Pycnanthemum virginianum   | Mountain mint      | 262 |
| Vernonia fasciculata       | Ironweed           | 328 |
| Veronicastrum virginicum   | Culver's root      | 330 |
| Grasses, Sedges and Rushes |                    |     |
| Andropogon gerardii        | Big bluestem       | 90  |
| Bromus ciliatus            | Fringed brome      | 128 |
| Carex bebbii               | Bebb's sedge       | 136 |
| Carex vulpinoidea          | Fox sedge          | 156 |
| Elymus virginicus          | Virginia wild rye  | 172 |
| Panicum virgatum           | Switchgrass        | 242 |
| Spartina pectinata         | Prairie cord grass | 312 |

**Dry Swales/Ditches.** Dry swales are open, vegetated channels that are designed to filter and slow stormwater. Check dams or berms are often used to hold water and settle pollutants. Dry swales are used along easements between properties or along roadways. Sandy soils may be added to the base of dry swales if existing soils are impermeable. Under-drain systems may also be installed to direct water to a storm sewer (Barr 2001).

Grasses are generally chosen for dry swales because they have many stems to slow water flow and can be repeatedly mown during the growing season. Dry swales may be maintained as lawn, but are most effective at slowing and treating water when they are planted with dry



SPIDERWORT

or mesic prairie species. Grass swales should be mowed at least annually to prevent trees and shrubs from inhibiting grass growth (King County 1996). Mowing height for grass swales should be 4 to 9 inches. A common Minnesota Department of Transportation (MnDOT) seed mix used for swales is Mixture 28B.

| Dry swales                                               |                         |          |
|----------------------------------------------------------|-------------------------|----------|
| Scientific Name                                          | Common Name             | See Page |
| Forbs and Ferns                                          | ·                       |          |
| Anemone canadensis                                       | Canada anemone          | 92       |
| Artemisia ludoviciana                                    | Prairie sage            | 100      |
| Asclepias incarnata                                      | Marsh milkweed          | 102      |
| Aster puniceus                                           | Red-stemmed aster       | 118      |
| Euthanmia graminifolia                                   | Flat-top goldenrod      | 184      |
| Lobelia siphilitica                                      | Blue lobelia            | 228      |
| Pycnanthemum virginianum                                 | Mountain mint           | 262      |
| Verbena hastata                                          | Blue vervain            | 326      |
| Grasses, Sedges and Rushes                               | ·                       |          |
| Andropogon gerardii                                      | Big bluestem            | 90       |
| Bromus ciliatus                                          | Fringed brome           | 128      |
| Calamagrostis canadensis                                 | Canada blue-joint grass | 130      |
| Carex bebbii                                             | Bebb's sedge            | 136      |
| Carex vulpinoidea                                        | Fox sedge               | 156      |
| Elymus virginicus                                        | Virginia wild rye       | 172      |
| Glyceria striata                                         | Fowl manna grass        | 196      |
| Juncus effusus                                           | Soft rush               | 212      |
| Panicum virgatum                                         | Switchgrass             | 242      |
| Scirpus atrovirens                                       | Green bulrush           | 284      |
| Spartina pectinata                                       | Prairie cord grass      | 312      |
| Useful sod-forming grasses not covered in this guidebook |                         |          |
| Agrostis palustris                                       | Creeping bentgrass      |          |
| <i>Elymus</i> sp.                                        | Wheat-grass             |          |
| Poa palustris                                            | Fowl bluegrass          |          |

#### Infiltration



Infiltration systems are designed to infiltrate stormwater into the soil and often utilize plants to provide filtration and evapotranspiration. Infiltration systems covered in this guidebook include rain water gardens, infiltration basins, dry swales and infiltration trenches.

#### Rain Water Gardens (on-lot infiltration)

Rain water gardens are small depressions that are ideal for residential and small commercial sites. They are most effective in areas where soils have good infiltration capacity. Since these systems are designed to drain relatively quickly, a large variety of shrubs, perennial grasses and flowers can be planted. Dry- and mesic-prairie species are well suited to the side slopes of rain water gardens while wet meadow species are well suited to the lower portions.



BLUE VERVAIN

| Rainwater Garden Side Slopes   |                      |          |
|--------------------------------|----------------------|----------|
| Scientific Name                | Common Name          | See Page |
| Trees and Shrubs               |                      | 0        |
| Aronia melanocarpa             | Black chokeberry     | 98       |
| Cornus racemosa                | Gray dogwood         | 166      |
| Viburnum trilobum              | High bush cranberry  | 334      |
| Forbs and Ferns                | , , ,                |          |
| Allium stellatum               | Prairie wild onion   | 84       |
| Anemone canadensis             | Canada anemone       | 92       |
| Arisaema triphyllum            | Jack-in-the-pulpit   | 96       |
| Artemisia ludoviciana          | Prairie sage         | 100      |
| Asclepias tuberosa             | Butterfly milkweed   | 104      |
| Aster laevis                   | Smooth aster         | 106      |
| Aster macrophyllus             | Bigleaf aster        | 112      |
| Aster pilosus                  | Frost aster          | 116      |
| Epilobium angustifolium        | Fireweed             | 174      |
| Eryngium yuccifolium           | Rattlesnake master   | 178      |
| Galium boreale                 | Northern bedstraw    | 190      |
| Heuchera richardsonii          | Prairie alumroot     | 202      |
| Liatris ligulistylis           | Meadow blazingstar   | 220      |
| Liatris pychnostachya          | Prairie blazingstar  | 222      |
| Lilium superbum                | Turk's-cap lily      | 224      |
| Matteuccia struthiopteris var. | Ostrich fern         | 234      |
| pennsylvanica                  |                      |          |
| Monarda fistulosa              | Wild bergamot        | 236      |
| Osmunda regalis                | Royal fern           | 240      |
| Pteridium aquilinum            | Bracken fern         | 260      |
| Pycnanthemum virginianum       | Mountain mint        | 262      |
| Ratibida pinnata               | Yellow coneflower    | 266      |
| Rudbeckia subtomentosa         | Brown-eyed Susan     | 268      |
| Smilacina racemosa             | False Solomon's seal | 300      |
| Solidago flexicaulis           | Zig-zag goldenrod    | 302      |
| Solidago riddellii             | Riddell's goldenrod  | 304      |
| Solidago rigida                | Stiff goldenrod      | 306      |
| Tradescantia ohiensis          | Ohio spiderwort      | 320      |
| Zizia aurea                    | Golden alexanders    | 336      |
| Grasses, Sedges and Rushes     |                      |          |
| Andropogon gerardii            | Big bluestem         | 90       |
| Bromus ciliatus                | Fringed brome        | 128      |
| Panicum virgatum               | Switchgrass          | 242      |
| Schizachyrium scoparium        | Little bluestem      | 280      |
| Sorghastrum nutans             | Indian grass         | 308      |

| Rainwater Garden Base     |                     |          |
|---------------------------|---------------------|----------|
| Scientific Name           | Common Name         | See Page |
| Trees and Shrubs          | <u>.</u>            |          |
| Aronia melanocarpa        | Black chokeberry    | 98       |
| Cephalanthus occidentalis | Buttonbush          | 160      |
| Cornus sericea            | Red-osier dogwood   | 168      |
| Ilex verticillata         | Winterberry         | 204      |
| Viburnum trilobum         | High bush cranberry | 334      |
| Forbs and Ferns           | · · ·               |          |
| Agastache foeniculum      | Giant hyssop        | 80       |
| Anemone canadensis        | Canada anemone      | 92       |
| Angelica atropurpurea     | Angelica            | 94       |
| Asclepias incarnata       | Marsh milkweed      | 102      |
| Aster novae-angliae       | New England aster   | 114      |
| Aster puniceus            | Red-stemmed aster   | 118      |
| Boltonia asteroides       | Boltonia            | 126      |
| Chelone glabra            | Turtlehead          | 162      |
| Equisetum fluviatile      | Horsetail           | 176      |
| Eupatorium maculatum      | Joe-pye weed        | 180      |
| Eupatorium perfoliatum    | Boneset             | 182      |
| Gentiana andrewsii        | Bottle gentian      | 192      |
| Helenium autumnale        | Sneezeweed          | 198      |
| Iris versicolor           | Blueflag            | 208      |
| Liatris ligulistylis      | Meadow blazingstar  | 220      |
| Liatris pychnostachya     | Prairie blazingstar | 222      |
| Lilium superbum           | Turk's-cap lily     | 224      |
| Lobelia cardinalis        | Cardinal flower     | 226      |
| Lobelia siphilitica       | Blue lobelia        | 228      |
| Lysimachia thrysiflora    | Tufted loosestrife  | 230      |
| Onoclea sensibilis        | Sensitive fern      | 238      |
| Osmunda regalis           | Royal fern          | 240      |
| Physostegia virginiana    | Obedient plant      | 248      |
| Pteridium aquilinum       | Bracken fern        | 260      |
| Pycnanthemum virginianum  | Mountain mint       | 262      |
| Rudbeckia subtomentosa    | Brown-eyed Susan    | 268      |
| Scutterlaria lateriflora  | Mad-dog skullcap    | 294      |
| Silphium perfoliatum      | Cup plant           | 298      |
| Solidago rigida           | Stiff goldenrod     | 306      |
| Thalictrum dasycarpum     | Tall meadowrue      | 318      |
| Vernonia fasciculata      | Ironweed            | 328      |
| Veronicastrum virginicum  | Culver's root       | 330      |

| Rainwater Garden Base Cont. |                    |          |
|-----------------------------|--------------------|----------|
| Scientific Name             | Common Name        | See Page |
| Grasses, Sedges and Rushes  |                    |          |
| Bromus ciliatus             | Fringed brome      | 128      |
| Carex comosa                | Bottlebrush sedge  | 138      |
| Carex crinita               | Caterpillar sedge  | 140      |
| Carex hystericina           | Porcupine sedge    | 142      |
| Carex vulpinoidea           | Fox sedge          | 156      |
| Glyceria striata            | Fowl manna grass   | 196      |
| Juncus effusus              | Soft rush          | 212      |
| Panicum virgatum            | Switchgrass        | 242      |
| Scirpus cyperinus           | Woolgrass          | 286      |
| Spartina pectinata          | Prairie cord grass | 312      |

**Infiltration Basin.** Infiltration basins, like rain water gardens, are designed to infiltrate stormwater relatively quickly, but they are larger in



WILD BERGAMOT

size and receive stormwater from wider areas via pipes or swales. Deep-rooted plants are most effective in these systems as they increase the rate of infiltration and prevent erosion. If sod is chosen to vegetate an infiltration basin, the sod should be grown in permeable soils; sod grown in clay may restrict infiltration. If sod is used for infiltration basins, mowing height should be 4 to 9 inches. Trees can be incorporated along the side slopes of infiltration basins but should be planted at least 15 feet away from perforated pipes and 25 feet from riser structures (Ogle and Hoag 2000).

| Infiltration Basin Side Slopes |                  |          |
|--------------------------------|------------------|----------|
| Scientific Name                | Common Name      | See Page |
| Trees and Shrubs               |                  |          |
| Acer saccharinum               | Silver maple     | 76       |
| Amorpha fruticosa              | Indigo bush      | 88       |
| Aronia melanocarpa             | Black chokeberry | 98       |
| Betula nigra                   | River birch      | 122      |
| Celtis occidentalis            | Hackberry        | 158      |
| Cornus racemosa                | Gray dogwood     | 166      |
| Fraxinus nigra                 | Black ash        | 186      |
| Fraxinus pennsylvanica         | Green ash        | 188      |

| Ilex verticillata              | Winterberry            | 204 |
|--------------------------------|------------------------|-----|
| Larix laricina                 | Tamarack               | 216 |
| Physocarpus opulifolius        | Ninebark               | 246 |
| Populus deltoides              | Eastern cottonwood     | 254 |
| Populus tremuloides            | Quaking aspen          | 256 |
| Quercus bicolor                | Swamp white oak        | 264 |
| Salix nigra                    | Black willow           | 276 |
| Sambucus pubens                | Red-berried elder      | 278 |
| Spiraea alba                   | Meadowsweet            | 314 |
| Viburnum lentago               | Nannyberry             | 332 |
| Viburnum trilobum              | High bush cranberry    | 334 |
| Forbs and Ferns                |                        |     |
| Agastache foeniculum           | Giant hyssop           | 80  |
| Allium stellatum               | Prairie wild onion     | 84  |
| Anemone canadensis             | Canada anemone         | 92  |
| Angelica atropurpurea          | Angelica               | 94  |
| Artemisia ludoviciana          | Prairie sage           | 100 |
| Asclepias tuberosa             | Butterfly milkweed     | 104 |
| Aster laevis                   | Smooth aster           | 106 |
| Aster lanceolatus (simplex)    | Panicle aster          | 108 |
| Aster macrophyllus             | Bigleaf aster          | 112 |
| Aster novae-angliae            | New England aster      | 114 |
| Aster pilosus                  | Frost aster            | 116 |
| Athyrium filix-femina          | Lady fern              | 120 |
| Boltonia asteroides            | Boltonia               | 126 |
| Equisetum fluviatile           | Horsetail              | 176 |
| Eryngium yuccifolium           | Rattlesnake master     | 178 |
| Euthanmia graminifolia         | Grass-leaved goldenrod | 184 |
| Galium boreale                 | Northern bedstraw      | 190 |
| Helianthus grosseserratus      | Sawtooth sunflower     | 200 |
| Heuchera richardsonii          | Prairie alumroot       | 202 |
| Liatris ligulistylis           | Meadow blazingstar     | 220 |
| Liatris pychnostachya          | Prairie blazingstar    | 222 |
| Lilium superbum                | Turk's-cap lily        | 224 |
| Matteuccia struthiopteris var. | Ostrich fern           | 234 |
| pennsylvanica                  |                        |     |
| Monarda fistulosa              | Wild bergamot          | 236 |
| Osmunda regalis                | Royal fern             | 240 |
| Pteridium aquilinum            | Bracken fern           | 260 |
| Pycnanthemum virginianum       | Mountain mint          | 262 |
| Smilacina racemosum            | False Solomon's seal   | 300 |
| Solidago flexicaulis           | Zig-zag goldenrod      | 302 |
| Solidago riddellii             | Riddell's goldenrod    | 304 |
| Solidago rigida                | Stiff goldenrod        | 306 |
| Tradescantia ohiensis          | Ohio spiderwort        | 320 |

| Infiltration Basin Side Slopes Cont. |                   |          |
|--------------------------------------|-------------------|----------|
| Scientific Name                      | Common Name       | See Page |
| Zizia aurea                          | Golden alexanders | 336      |
| Grasses, Sedges and Rushes           |                   |          |
| Andropogon gerardii                  | Big bluestem      | 90       |
| Bromus ciliatus                      | Fringed brome     | 128      |
| Carex vulpinoidea                    | Fox sedge         | 156      |
| Panicum virgatum                     | Switchgrass       | 242      |
| Schizachyrium scoparium              | Little bluestem   | 280      |
| Sorghastrum nutans                   | Indian grass      | 308      |

| Infiltration Basin Base   |                     |          |
|---------------------------|---------------------|----------|
| Scientific Name           | Common Name         | See Page |
| Trees and Shrubs          | •                   |          |
| Aronia melanocarpa        | Black chokeberry    | 98       |
| Cephalanthus occidentalis | Buttonbush          | 160      |
| Cornus sericea            | Red-osier dogwood   | 168      |
| Ilex verticillata         | Winterberry         | 204      |
| Viburnum trilobum         | High bush cranberry | 334      |
| Forbs and Ferns           |                     |          |
| Agastache foeniculum      | Giant hyssop        | 80       |
| Anemone canadensis        | Canada anemone      | 92       |
| Angelica atropurpurea     | Angelica            | 94       |
| Asclepias incarnata       | Marsh milkweed      | 102      |
| Aster novae-angliae       | New England aster   | 114      |
| Aster puniceus            | Red-stemmed aster   | 118      |
| Boltonia asteroides       | Boltonia            | 126      |
| Chelone glabra            | Turtlehead          | 162      |
| Equisetum fluviatile      | Horsetail           | 176      |
| Eupatorium maculatum      | Joe-pye-weed        | 180      |
| Eupatorium perfoliatum    | Boneset             | 182      |
| Gentiana andrewsii        | Bottle gentian      | 192      |
| Helenium autumnale        | Sneezeweed          | 198      |
| Iris versicolor           | Blueflag            | 208      |
| Liatris ligulistylis      | Meadow blazingstar  | 220      |
| Liatris pychnostachya     | Prairie blazingstar | 222      |
| Lilium superbum           | Turk's-cap lily     | 224      |
| Lobelia cardinalis        | Cardinal flower     | 226      |
| Lobelia siphilitica       | Blue lobelia        | 228      |
| Lysimachia thrysiflora    | Tufted loosestrife  | 230      |
| Onoclea sensibilis        | Sensitive fern      | 238      |

| Osmunda regalis            | Royal fern         | 240 |
|----------------------------|--------------------|-----|
| Physostegia virginiana     | Obedient plant     | 248 |
| Pteridium aquilinum        | Bracken fern       | 260 |
| Pycnanthemum virginianum   | Mountain mint      | 262 |
| Rudbeckia subtomentosa     | Brown-eyed Susan   | 268 |
| Scutterlaria lateriflora   | Mad-dog skullcap   | 294 |
| Silphium perfoliatum       | Cup plant          | 298 |
| Solidago rigida            | Stiff goldenrod    | 306 |
| Thalictrum dasycarpum      | Tall meadowrue     | 318 |
| Vernonia fasciculata       | Ironweed           | 328 |
| Veronicastrum virginicum   | Culver's root      | 330 |
| Grasses, Sedges and Rushes |                    |     |
| Bromus ciliatus            | Fringed brome      | 128 |
| Carex comosa               | Bottlebrush sedge  | 138 |
| Carex crinita              | Caterpillar sedge  | 140 |
| Carex hystericina          | Porcupine sedge    | 142 |
| Carex vulpinoidea          | Fox sedge          | 156 |
| Glyceria striata           | Fowl manna grass   | 196 |
| Juncus effusus             | Soft rush          | 212 |
| Panicum virgatum           | Switchgrass        | 242 |
| Scirpus cyperinus          | Woolgrass          | 286 |
| Spartina pectinata         | Prairie cord grass | 312 |

Infiltration Trench. This infiltration technique involves digging a trench 3 to 8 feet deep, lining it with filter fabric and then filling it with stone. Infiltration trenches are designed to receive clean sheet flow from a small area, such as a few residences or rooftops (Barr 2001). Although infiltration trenches are not vegetated, it is important that suspended solids be removed before they enter the trench. Grassed filter strips are often an effective tool for pretreatment (Barr 2001). Grass filter strips are discussed under filtration.

Wetlands

Wetland systems are designed for flood control and the removal of pollutants from stormwater. Wetland systems covered in this guidebook include stormwater wetlands and wet swales.

**Stormwater Wetland.** Like natural wetlands, stormwater wetlands have the capacity to improve water quality through microbial breakdown of pollutants, plant uptake, retention of stormwater, settling and adsorption. Sediment forebays and micropools are often designed as part of stormwater wetlands to prevent sediment from filling the wetland. Stormwater from large areas can be diverted into these wetlands. If soils drain too quickly, liners can be used to hold water (Barr 2001). Stormwater wetlands will have zones and plants similar to wet ponds. They may have less fluctuation, though, and can maintain higher diversity. (For species list, see Wet Ponds and Extended Storage Ponds.)

Wet Swale. Wet swales consist of broad, open channels, used to temporarily store water. Wet swales are constructed on existing soils and are often at or slightly above the water table (Barr 2001). As a

result, they can incorporate a wide variety of wetland and wet-meadow shrub, grass and flower species. The primary purpose of wet swales is to improve water quality and to slow runoff velocity. Check dams and berms are often used to slow and retain water.



Photo: Dan Shaw

46

| Wet Swale                   |                        |          |  |  |
|-----------------------------|------------------------|----------|--|--|
| Scientific Name             | Common Name            | See Page |  |  |
| Trees and Shrubs            | ·                      |          |  |  |
| Alnus incana                | Speckled alder         | 86       |  |  |
| Amorpha fruticosa           | Indigo bush            | 88       |  |  |
| Aronia melanocarpa          | Black chokeberry       | 98       |  |  |
| Betula nigra                | River birch            | 122      |  |  |
| Cephalanthus occidentalis   | Buttonbush             | 160      |  |  |
| Cornus amomum               | Silky dogwood          | 164      |  |  |
| Cornus racemosa             | Gray dogwood           | 166      |  |  |
| Cornus sericea              | Red-osier dogwood      | 168      |  |  |
| Ilex verticillata           | Winterberry            | 204      |  |  |
| Larix laricina              | Tamarack               | 216      |  |  |
| Physocarpus opulifolius     | Ninebark               | 246      |  |  |
| Salix discolor              | Pussy willow           | 272      |  |  |
| Salix exigua                | Sandbar willow         | 274      |  |  |
| Sambucus pubens             | Red-berried elder      | 278      |  |  |
| Spiraea alba                | Meadowsweet            | 314      |  |  |
| Viburnum lentago            | Nannyberry             | 332      |  |  |
| Viburnum trilobum           | High bush cranberry    | 334      |  |  |
| Forbs and Ferns             | •                      | <b>.</b> |  |  |
| Agastache foeniculum        | Giant hyssop           | 80       |  |  |
| Alisma trivale              | Water plantain         | 82       |  |  |
| Anemone canadensis          | Canada anemone         | 92       |  |  |
| Angelica atropurpurea       | Angelica               | 94       |  |  |
| Artemisia ludoviciana       | Prairie sage           | 100      |  |  |
| Asclepias incarnata         | Marsh milkweed         | 102      |  |  |
| Aster lanceolatus (simplex) | Panicle aster          | 108      |  |  |
| Aster lucidulus             | Swamp aster            | 110      |  |  |
| Aster novae-angliae         | New England aster      | 114      |  |  |
| Aster puniceus              | Red-stemmed aster      | 118      |  |  |
| Boltonia asteroides         | Boltonia               | 126      |  |  |
| Caltha palustris            | Marsh marigold         | 132      |  |  |
| Chelone glabra              | Turtlehead             | 162      |  |  |
| Equisetum fluviatile        | Horsetail              | 176      |  |  |
| Eryngium yuccifolium        | Rattlesnake master     | 178      |  |  |
| Eupatorium maculatum        | Joe-pye-weed           | 180      |  |  |
| Eupatorium perfoliatum      | Boneset                | 182      |  |  |
| Euthanmia graminifolia      | Grass-leaved goldenrod | 184      |  |  |
| Gentiana andrewsii          | Bottle gentian         | 192      |  |  |
| Helenium autumnale          | Sneezeweed             | 198      |  |  |
| Helianthus grosseserratus   | Sawtooth sunflower     | 200      |  |  |
| Impatiens capensis          | Jewelweed              | 206      |  |  |

| Wet Swale Cont.            |                         |          |  |
|----------------------------|-------------------------|----------|--|
| Scientific Name            | Common Name             | See Page |  |
| Iris versicolor            | Blueflag                | 208      |  |
| Liatris ligulistylis       | Meadow blazingstar      | 220      |  |
| Liatris pychnostachya      | Prairie blazingstar     | 222      |  |
| Lilium superbum            | Turk's-cap lily         | 224      |  |
| Lobelia cardinalis         | Cardinal flower         | 226      |  |
| Lobelia siphilitica        | Blue lobelia            | 228      |  |
| Lysimachia thrysiflora     | Tufted loosestrife      | 230      |  |
| Monarda fistulosa          | Wild bergamot           | 236      |  |
| Onoclea sensibilis         | Sensitive fern          | 238      |  |
| Osmunda regalis            | Royal fern              | 240      |  |
| Physostegia virginiana     | Obedient plant          | 248      |  |
| Polygonum amphibium        | Water smartweed         | 250      |  |
| Pontederia cordata         | Pickerelweed            | 252      |  |
| Potentilla palustris       | Marsh cinquefoil        | 258      |  |
| Pycnanthemum virginianum   | Mountain mint           | 262      |  |
| Rudbeckia subtomentosa     | Brown-eyed Susan        | 268      |  |
| Sagittaria latifolia       | Broadleaved arrowhead   | 270      |  |
| Scutterlaria lateriflora   | Mad-dog skullcap        | 294      |  |
| Silphium perfoliatum       | Cup plant               | 298      |  |
| Solidago rigida            | Stiff goldenrod         | 306      |  |
| Sparganium eurycarpum      | Giant burreed           | 310      |  |
| Symplocarpus foetidus      | Skunk cabbage           | 316      |  |
| Thalictrum dasycarpum      | Tall meadowrue          | 318      |  |
| Tradescantia ohiensis      | Ohio spiderwort         | 320      |  |
| Verbena hastata            | Blue vervain            | 326      |  |
| Vernonia fasciculata       | Ironweed                | 328      |  |
| Veronicastrum virginicum   | Culver's root           | 330      |  |
| Zizia aurea                | Golden alexanders       | 336      |  |
| Grasses, Sedges and Rushes |                         |          |  |
| Andropogon gerardii        | Big bluestem            | 90       |  |
| Bromus ciliatus            | Fringed brome           | 128      |  |
| Calamagrostis canadensis   | Canada blue-joint grass | 130      |  |
| Carex aquatilis            | Water sedge             | 134      |  |
| Carex bebbii               | Bebb's sedge            | 136      |  |
| Carex comosa               | Bottlebrush sedge       | 138      |  |
| Carex crinita              | Caterpillar sedge       | 140      |  |
| Carex hystericina          | Porcupine sedge         | 142      |  |
| Carex lacustris            | Lake sedge              | 144      |  |
| Carex languinosa           | Wooly sedge             | 146      |  |
| Carex lasiocarpa           | Wooly needle sedge      | 148      |  |
| Carex retrorsa             | Retrorse sedge          | 150      |  |

| Carex stipata       | Awl-fruited sedge    | 152 |
|---------------------|----------------------|-----|
| Carex stricta       | Tussock sedge        | 154 |
| Carex vulpinoidea   | Fox sedge            | 156 |
| Eleocharis obtusa   | Blunt spikerush      | 170 |
| Elymus virginicus   | Virginia wild rye    | 172 |
| Glyceria grandis    | Giant manna grass    | 194 |
| Glyceria striata    | Fowl manna grass     | 196 |
| Juncus balticus     | Baltic rush          | 210 |
| Juncus effusus      | Soft rush            | 212 |
| Juncus torreyi      | Torrey rush          | 214 |
| Leersia oryzoides   | Rice-cut grass       | 218 |
| Panicum virgatum    | Switchgrass          | 242 |
| Scirpus acutus      | Hardstem bulrush     | 282 |
| Scirpus atrovirens  | Green bulrush        | 284 |
| Scirpus cyperinus   | Woolgrass            | 286 |
| Scirpus fluviatilis | River bulrush        | 288 |
| Scirpus pungens     | Three-square bulrush | 290 |
| Scirpus validus     | Soft-stem bulrush    | 292 |
| Spartina pectinata  | Prairie cord grass   | 312 |
| Typha latifolia     | Broadleaved cattail  | 322 |



DBEDIENI PLANT

Filtration

Filtration systems remain dry between storm events and are designed to remove pollutants from stormwater. Filtration MPs covered in this guidebook include bioretention systems and filter strips.

**Bioretention Basins.** Like rainwater gardens and infiltration basins, bioretention basins rely on plants to function effectively. Bioretention basins can be designed for infiltration but often have longer detention times and are often built with soils that have less infiltration capacity (Barr 2001). Generally the same species used for rain water gardens and infiltration basins can be used for bioretention areas (for species list, see Rain Water Gardens and Infiltration Basins).

**Filter Strips.** Filter strips are densely graded and uniformly vegetated areas designed to treat sheet flow (Barr 2001). Filter strips differ from natural buffers in that they are generally designed specifically for pollutant removal (MPCA 2000). In filter strips, native vegetation slows runoff, collects sediment and allows some infiltration. Dry- and mesic-prairie species, especially deep-rooted grasses, are well suited for filter strips. They produce many stems that slow water flow and have deep roots that increase infiltration and absorption. Tree and shrub species can be planted among the prairie species also, but they will inhibit growth of the prairie species if the shade they produce is dense. Dense stands of vegetation are required for filter strips to function effectively. As a result, monitoring is important to ensure the establishment and persistence of desirable vegetation. Excessive accumulation of sediment can affect plant growth and should be removed (MPCA 2000).

| Filtration Strips              |                        |          |  |  |
|--------------------------------|------------------------|----------|--|--|
| Scientific Name                | Common Name            | See Page |  |  |
| Trees and Shrubs               |                        |          |  |  |
| Acer saccharinum               | Silver maple           | 76       |  |  |
| Aronia melanocarpa             | Black Chokeberry       | 98       |  |  |
| Betula nigra                   | River birch            | 122      |  |  |
| Celtis occidentalis            | Hackberry              | 158      |  |  |
| Cornus racemosa                | Gray dogwood           | 166      |  |  |
| Fraxinus pennsylvanica         | Green ash              | 188      |  |  |
| Larix laricina                 | Tamarack               | 216      |  |  |
| Physocarpus opulifolius        | Ninebark               | 246      |  |  |
| Populus deltoides              | Eastern cottonwood     | 254      |  |  |
| Populus tremuloides            | Quaking aspen          | 256      |  |  |
| Quercus bicolor                | Swamp white oak        | 264      |  |  |
| Salix nigra                    | Black willow           | 276      |  |  |
| Spiraea alba                   | Meadowsweet            | 314      |  |  |
| Viburnum lentago               | Nannyberry             | 332      |  |  |
| Viburnum trilobum              | High bush cranberry    | 334      |  |  |
| Forbs and Ferns                | · · ·                  |          |  |  |
| Agastache foeniculum           | Giant hyssop           | 80       |  |  |
| Allium stellatum               | Prairie wild onion     | 84       |  |  |
| Anemone canadensis             | Canada anemone         | 92       |  |  |
| Angelica atropurpurea          | Angelica               | 94       |  |  |
| Artemisia ludoviciana          | Prairie sage           | 100      |  |  |
| Asclepias tuberosa             | Butterfly milkweed     | 104      |  |  |
| Aster laevis                   | Smooth aster           | 106      |  |  |
| Aster lanceolatus (simplex)    | Panicle aster          | 108      |  |  |
| Aster macrophyllus             | Bigleaf aster          | 112      |  |  |
| Aster novae-angliae            | New England aster      | 114      |  |  |
| Aster pilosus                  | Frost aster            | 116      |  |  |
| Athyrium filix-femina          | Lady fern              | 120      |  |  |
| Boltonia asteroides            | Boltonia               | 126      |  |  |
| Equisetum fluviatile           | Horsetail              | 176      |  |  |
| Eryngium yuccifolium           | Rattlesnake master     | 178      |  |  |
| Euthanmia graminifolia         | Grass-leaved goldenrod | 184      |  |  |
| Galium boreale                 | Northern bedstraw      | 190      |  |  |
| Helianthus grosseserratus      | Sawtooth sunflower     | 200      |  |  |
| Heuchera richardsonii          | Prairie alumroot       | 202      |  |  |
| Liatris ligulistylis           | Meadow blazingstar     | 220      |  |  |
| Liatris pychnostachya          | Prairie blazingstar    | 222      |  |  |
| Lilium superbum                | Turk's-cap lily        | 224      |  |  |
| Matteuccia struthiopteris var. | Ostrich fern           | 234      |  |  |
| pennsylvanica                  |                        |          |  |  |
| Monarda fistulosa              | Wild bergamot          | 236      |  |  |

| Filtration Strips Cont.                                 |                      |          |  |
|---------------------------------------------------------|----------------------|----------|--|
| Scientific Name                                         | Common Name          | See Page |  |
| Osmunda regalis                                         | Royal fern           | 240      |  |
| Pteridium aquilinum                                     | Bracken fern         | 260      |  |
| Pycnanthemum virginianum                                | Mountain mint        | 262      |  |
| Smilacina racemosa                                      | False Solomon's seal | 300      |  |
| Solidago flexicaulis                                    | Zig-zag goldenrod    | 302      |  |
| Solidago riddellii                                      | Riddell's goldenrod  | 304      |  |
| Solidago rigida                                         | Stiff goldenrod      | 306      |  |
| Tradescantia ohiensis                                   | Ohio spiderwort      | 320      |  |
| Zizia aurea                                             | Golden alexanders    | 336      |  |
| Grasses, Sedges and Rushes                              |                      |          |  |
| Andropogon gerardii                                     | Big bluestem         | 90       |  |
| Bromus ciliatus                                         | Fringed brome        | 128      |  |
| Carex vulpinoidea                                       | Fox sedge            | 156      |  |
| Panicum virgatum                                        | Switchgrass          | 242      |  |
| Schizachyrium scoparium                                 | Little bluestem      | 280      |  |
| Sorghastrum nutans                                      | Indian grass         | 308      |  |
| Other appropriate grasses not covered in this guidebook |                      |          |  |
| Bouteloua curtipendula                                  | Side-oats grama      |          |  |
| Bouteloua hirsuta                                       | Hairy grama          |          |  |
| Bromus kalmii                                           | Prairie brome        |          |  |
| Elymus canadensis                                       | Canada wild rye      |          |  |
| Koeleria cristata                                       | June grass           |          |  |
| Sporobolis heterolepis                                  | Prairie dropseed     |          |  |
| Stipa spartea                                           | Porcupine grass      |          |  |



MOUNTAIN MINT

#### LITERATURE CITED

(A separate Plant Pages Bibliography is provided for the Plant Information section of this guidebook.)

Athas, C., and C. Stevenson, 1991. *The use of artificial wetlands in treating stormwater runoff.* Maryland Sediment and Stormwater Administration. 66 pp.

Azous, A. L., and R. R. Horner, 2001. *Wetlands and Urbanization: Implications for the Future*. Lewis Publishers. 238 pp.

Barr Engineering Company, 2001. *Minnesota Urban Small Sites BMP Manual, Stormwater Best Management Practices for Cold Climates.* Prepared for the Metropolitan Council.

Bedford, B., and O. Loucks, 1984. *Response of Carex-Dominated Wetlands to Altered Temperature and Flooding Patterns*. Environmental Research Laboratory, U.S. Environmental Protection Agency.

Biesboer, D. D., and R. Jacobson, 1994. *Screening and Selection of Salt Tolerance in Native Warm Season Grasses*. Minnesota Dept. of Transportation, Report 94-11. 33pp.

Brown, R. G., 1984. Effects of an urban wetland on sediment and nutrient loads in runoff. *Wetlands* 4:147-158.

Casanova, M. T., and M. A. Brock, 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? *Plant Ecology* 147:237-250.

Claytor, R. A., and T. R. Schueler, 1996. *Design of Stormwater Filtering Systems*. The Center for Watershed Protection.

Cooke, S. S., R. R. Horner, C. Conolly, O. Edwards, M. Wilkinson and M. Emers, 1989. *Effects of Urban Stormwater Runoff on Paustrine Weland Vegetation Communities – Baseline Investigation (1988).* Report to U.S. Environmental Protection Agency, Region 10, by King County Resource Planning Section, Seattle, Wash. Donovan, L. A., K. W. McLeod, K. C. Sherrod, Jr. and N. J. Stumpff, 1988. Response of woody swamp seedlings to flooding and increased water temperature, growth, biomass, survivorship. *American Journal of Botany* 36(2):131-146.

Dushenko W. T., D. A. Bright and K. J. Reimer, 1995. Arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold mine effluent: relationships with environmental partitioning metal uptake and nutrients. *Aquatic Botany* 50:141-158.

Ewing, K., 1996. Tolerance of Four Wetland Plant Species to Flooding and Sediment Deposition. *Environmental and Experimental Botany* 36(2):131-146.

Fassman, E. A., S. L. Yu and A. L. Riscassi, 2001. *Planting Strategies for Constructed Wetlands for Stormwater Treatment*. Dept. of Civil Engineering, Univ. of Virginia, Charlottesville.

Flaherty, 2002. Using a Wetland to Clean Our Water. www.montana.edu/wwwpb/ag/bullrush.html. MSU Communication Services, Montana State Univ., Bozeman.

Galatowitsch, S. M., D. C. Whited, R. Lehtinen, J. Husveth and K. Schik, 1997. *The Vegetation of Wet Meadows in Relation to Their Land Use*. Dept. of Horticultural Science and Landscape Architecture, Univ. of Minnesota.

Harris, S. W., and W. H. Marshall, 1963. Ecology of Water-Level Manipulation on a Northern Marsh. *Ecology* 44(2):331-343.

Horner, R. R., F. B. Gutermuth, L.L. Conquest, and A. W. Johnson,
1988. Urban Stormwater and Puget Trough Wetlands. In *Proceedings* of the first Annual Meeting for Puget Sound Research, 18-19 March 1988, Seattle, WA. Puget Sound Water Quality Authority, Seattle, Wash.

Hudon, Christiane, 1997. Impact of Water Level Fluctuations on St. Lawrence River Aquatic Vegetation. *Canadian Journal of Fisheries and Aquatic Sciences* 54:2853-2865. Huston, M. A., 1979. A general hypothesis of species diversity. *American Naturalist* 113:81-101.

Husveth, J. J., 1999. *Stormwater Impacts to the Plant Communities of Glacial Marshes in the Minneapolis/St. Paul Metropolitan Area, Minnesota, USA*. A Thesis Submitted to the Faculty of the Graduate School of the University of Minnesota.

Isabelle, P. S., L. J. Fooks and P. A. Keddy, 1987. Effects of Roadside Snowmelt on Wetland Vegetation: An Experimental Study. *J. Environ. Mgmt*. 25:57-60.

Jacobson, Robert, 2000. *Mn/DOT Seeding Manual*. Minnesota Dept. of Transportation, St. Paul.

Jurik, T. W., S. C. Wang, and, A. G. van der Valk, 1994. Effects of sediment load on seedling emergence from *Wetland* seed banks. *Wetlands* 14(3):159-165.

Keddy, P. A., 1983. Shoreline Vegetation in Axe Lake, Ontario: Effects of Exposure on Zonation Patterns. *Ecology* 64(2):331-344.

Keeland, B. D., and R. R. Sharitz, 1997. The Effects of Water-Level Fluctuations on Weekly Tree Growth in a Southeastern USA Swamp. *American Journal. of Botany* 84(1):131-139.

Kennedy, H. E. Jr., and R. M. Krinard, 1974. *1973 Mississippi River Flood's Impact on Natural Hardwood Forests and Plantations*. U.S. Forest Service Research Note. Southern Forest Experiment Station, U.S. Dept. of Agriculture.

King County. 1996. *Surface Water Design Manual* (Draft of February 1996). Surface Water Management Division, King County Dept. of Public Works, Seattle, Wash.

Kozlowski, T. T., 1997. *Responses of Woody Plants to Flooding and Salinity*. Dept. of Environmental Science, Policy and Management, College of Natural Resources, Univ. of California-Berkeley.

Minnesota Pollution Control Agency, 2000. Protecting Water Quality in Urban Areas, Best Management Practices for Dealing with Storm Water Runoff from Urban, Suburban and Developing Areas of Minnesota. Minnesota Pollution Control Agency, St. Paul.

Ohrel, R., 2000. Choosing Appropriate Vegetation for Salt-impacted Roadways. In *The Practice of Watershed Protection* (Article 38). Editors Thomas R. Schueler and Heather K. Holland, Center for Watershed Protection, Ellicott City, Md.

Ogle, D. G., and J. C., Hoag, (USDA-Natural Resources Conservation Service), 2000. Stormwater Plant Management, A Resource Guide, Detailed information on appropriate plant materials for Best Management Practices. Prepared for Boise Public Works.

Minnesota Department of Natural Resources, www.dnr.state.mn.us

Occoquan Watershed Monitoring Lab and George Mason University, 1990. *Final Project Report: The Evaluation of a Created Wetland as an Urban Best Management Practice*. Northern Virginia Soil and Water Conservation District. 170 pp.

Pollock, M. M., R. J. Naiman and T. A. Hanley, 1998. Plant species richness in riparian wetlanda – A test of biodiversity theory. *Ecology* 79(1): 94-105.

Rice, J. S., and B. W. Pinkerton, 1993. Reed canarygrass survival under cyclic inundation, *Journal of Soil and Water Conservation* 48(2):132-135.

Seattle Metro, 1993. South Base Pond Report: The Response of Wetland Plants to Stormwater Runoff From a Transit Base. Pub. No. 775, August 1993.

Schueler, T., 2000. Persistence of Wetland Plantings Along the Aquatic Bench of Stormwater Ponds. In *The Practice of Watershed Protection* (Article 87). Editors Thomas R. Schueler and Heather K. Holland. Center for Watershed Protection, Ellicott City, Md. Schwartz, L. N., 1985. The effects of sewage on a Lake Champlain wetland. *Journal of Freshwater Ecology* 3(1):35-46.

Shaw, Daniel B., 2000. *Native Vegetation in Restored and Created Wetlands: Its Establishment and Management in Minnesota and the Upper Midwest*. Minnesota Board of Water and Soil Resources. 93 pp.

Shaw, Daniel B., 2002. Personal observation.

Shenot, J., 1993. An Analysis of Wetland Planting Success at Three Stormwater Management Ponds in Montgomery Co., MD. M.S. Thesis. Univ. of Maryland. 114 pp.

Snowden (nee Cook ), R. E. D., and B. D. Wheeler, 1993. Iron toxicity to fen plant species. *Journal of Ecology* 81:35-46.

Squires, L., and A. G. van der Valk, 1992. Water depth tolerance of the dominant emergent macrophytes of the delta marsh, Manitoba. *Canadian Journal of Botany* 70:1860-1867.

Stockdale, E. C., 1991. Freshwater Wetlands, Urban Stormwater, and Nonpoint Pollution Control: A Literature Review and Annotated Bibliography. Washington Dept. of Ecology, Olympia.

Tilton, D. L. and R. H. Kadlec, 1979. The Utilization of Freshwater Wetland for Nutrient Removal from Secondarily Treated Wastewater Effluent. *Journal of Environmental Quality* 8:328-334

University of Michigan Wetlands Ecosystem Research Group, 1974. State of the Art Survey and Evaluation of Marsh Plant Establishment Techniques, Induced and Natural. School of Natural Resources, College of Engineering, Univ. of Michigan.

Van der Valk, A. G., S. D. Swanson and R. F., Nuss, 1981. The response of plant species to burial in three types of Alaskan wetlands. *Canadian Journal of Botany* 61:1150-1164.

Wetzel, R. G., 1983. *Limnology*. 2nd ed. Saunders College Publishing. Fort Worth, Tex.

Wienhold, C. E., and A. G. van der Valk, 1988. The impact of duration of drainage on the seed banks of northern prairie wetlands. *Canadian Journal of Botany* 67:1878-1884.

Wilcox, D.A., and J. E. Meeker, 1996. Disturbance effects on aquatic vegetation in regulated and unregulated lakes in northern Minnesota. *Canadian Journal of Botany* 69:1542-1551.

Ye, Z., A. J. M. Baker, M. Wong and A. J. Willis, 1998. Zinc, lead and cadmium accumulation and tolerance in *Typha latifolia* as affected by iron plaque on the root surface. *Aquatic Botany* 61:55-67.

Yeager, L. E., 1949. Effect of permanent flooding in a river-bottom timber area. *Illinois Natural History Survey* 25(2):65.

Yetka, L.A., 1998. Effects of planting season and hydrology on establishment and growth of sedge rhizomes in a restored wetland. Univ. of Minnesota (Master's Thesis).

Zhang, J. and M. A. Maun, 1990. Effects of sand burial on seed germination, seedling emergence, survival and growth of *Agryopyron psammophilum*, *Canadian Journal of Botany* 68:304.

Zwack, J. A., and W. R., Graves, 1999. Variation Among Red and Freeman Maples in Response to Drought and Flooding. *HortScience* 34(4):664-668.

YELLOW CONEFLOWER

