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In the demand for recreational fishing sites, an important explanatory variable differentiat-
ing sites is the unobserved expected catch rate. Since the observed catch rate is subject to
sampling variability, using the average of a site’s observed catch rates causes the parameter
estimator on catch to be biased downward. We develop and demonstrate a solution to this
errors-in-variables problem when there are repeated measurements on the catch rate.
Consistent and efficient estimates of both the demand parameters and the expected catch
rates are obtained by simultaneously estimating them by maximum likelihood. An empirical
example demonstrates the importance of simultaneous estimation. Q 1998 Academic Press

1. INTRODUCTION

The use value recreational anglers receive from our nation’s rivers and streams
are determined in a major way by catch rates and the influence of those catch rates

Ž w x.on demand and utility e.g., 12, 9, 28, 30 . Impacts from mining, industry, and
other sources injure fish stocks, which can affect catch rates. Examples include oil

w x w xspills 3, 5, 9 , chemical spills 14 , soil erosion and nonpoint agricultural pollution
w x w x25 , the release of hazardous substances from mining and mineral processing 20 ,

w x w xdams 21 , and acid rain 22 .
Accurate estimation of how much such injuries damage society is important: the

dollar estimates of damages and cleanup determine whether cleanup is efficient,
and under CERCLA the polluter is, in general, legally responsible for all past and
residual damages. In this paper we show that the literature has consistently
underestimated the importance of catch rates, and thus underestimated the dam-
ages associated with reductions in catch rates. The reason previous studies have
underestimated the catch rate is that they have used the average of observed catch

Ž .rates, rather than the true but unobserved catch rate as a regressor. This
errors-in-variables problem results in attenuation bias. We propose and implement
a solution to the problem.
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Consider modeling where and how often an individual fishes. An important
determinant of these choices is the expected catch rates at the available sites. The
expected catch rate is defined as the catch rate at a site for a typical angler on a
typical day. It is a characteristic of a site, such as acreage or the availability of boat
ramps. But unlike those characteristics, expected catch rates are not observed.

Suppose the researcher has two data sets: a travel-cost data set and a catch data
set. The travel-cost data set includes, for a group of individuals, how many trips
each sampled individual took to each available site, along with individual-specific
trip costs, income, and other individual-specific characteristics such as skill level,
which can affect catch. The catch data set includes a set of observed catch rates for
each site. Typically, the observed number of catch rates will vary significantly by
site, with often more observed catch rates for sites that are thought to have high
expected catch rates, and fewer observed catch rates for sites that are thought to
have low expected catch rates.

The two data sets might or might not overlap. There is no overlap if the
individuals who generated the catch data are not included in the travel-cost data
set. There is complete overlap if the catch data is solely from the individuals in the
travel-cost data set. A hybrid case is if some of the individuals who generated the
catch data also appear in the travel-cost data set.1

The problem is to use these two data sets to estimate the parameter associated
with expected catch rate in the demand function. Typically, this is done in two
steps. An estimate of the expected catch rate at a site is obtained by averaging the
observed individual catch rates for that site, and then these average catch rates are
entered into the demand functions for the sites as if they were the expected catch
rates measured without error. This practice is almost universal in models of
recreational fishing demand that include catch rate as an explanatory variable. A

w x 2few recent examples are 9, 10, 15, 21, 26, 27 .
However, since observed catch rates are subject to sampling variability, the

average of the observed catch rates for a site is not the site’s expected catch rate,
but rather its expected catch rate measured with error. In addition, the degree of
error varies by site, and is inversely related to the number of observed catch rates
at the site. Consequently, an errors-in-variables problem exists, which, if not
corrected, results in parameter estimates that are both biased and inconsistent.
That is, with the standard two-step approach, the parameters that explain the
influence on demand of expected catch and travel cost are both biased.

ŽWhen there is only one observation on the variable measured with error in this
.case, the expected catch rate for a site , the only solution to the errors-in-variables

1 w xIn our empirical example, a travel-cost study done for the state of Montana 18, 20 , catch data were
Ž .collected for one trip from each of 1344 anglers. There were 443 33% of the total individuals followed

for a season to determine how many trips each individual took to each available site. In this example,
the travel-cost data consists of travel patterns for 443 individuals. Three different catch data sets could

Žbe constructed: catch data from the 901 individuals who are not in the travel-cost data set the case of
. Ž .no overlap , catch data from only those 443 individuals in the travel-cost data set complete overlap ,

Ž .and all 1344 observed catch rates in the catch data set partial overlap .
2A few studies use stock size rather than catch rate as the measure of fishing quality. See, for

w x Ž w x.example, 4 . A few studies, e.g., 2, 3 have used catch ratings such as those that appear in newspapers.
w xMcConnell et al. 15 allow expected catch to vary across anglers. They model an individual’s total catch

on a trip as the result of a Poisson process, which implies the estimated expected catch rate is expected
catch measured with error. They separately estimate the Poisson catch process, and then use the
resulting estimated catch rates as exogenous variables in their recreational demand model.
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problem is the questionable method of instrumental variables.3 When there is
more than one observed catch rate for each site, consistent and efficient estimates
of both expected catch rates and the parameters in the demand functions for the
sites can be obtained by abandoning the two-stage approach mentioned above and
using maximum likelihood to simultaneously estimate the expected catch rates and
the parameters in the demand functions.

Intuitively, there are two types of information about the expected catch rates.
First, there is the average of each site’s observed catch rates, and, second, there is
the observed trip patterns. Ceteris paribus, individuals take more trips to sites with
high expected catch rates and fewer trips to sites with lower expected catch rates;
observed trip patterns are therefore significant predictors of expected catch rates.

If data on individual catch rates were available, but not data on trip patterns, the
Ž .best minimum variance statistical estimate of a site’s expected catch rate would

be the average of the site’s observed catch rates. Alternatively, if there were data
on trip patterns, but no data on individual catch rates, the best statistical estimates
of expected catch rates would be those estimates that, along with trip costs and
other explanatory variables, best explain the observed trip patterns. However, when
data are available on both individual catch rates and individual trip patterns, the
best statistical estimate of a site’s expected catch rate is a weighted average of
these two separate estimates, where the weight on the sample average catch rate is
a decreasing function of the sampling variation in the observed catch rates relative
to the sampling variation in the observed trip patterns. Such a weighting is critical
because if the average catch rate is computed from a large number of observations
Ž .a popular site , that average is likely to be a good estimate of the site’s expected
catch rate, but the average catch rate will likely be a poor estimate of a site’s
expected catch rate if it is based on only a small number of observations.

w xThis model was first proposed by Morey and Waldman 23 and Morey and Rowe
w x18 to explain choice of fishing sites in Montana. The model is new but has some

Ž .similarities to the multiple-indicator]multiple-cause MIMIC model of an unob-
w x w xservable variable 11 and to the analytic technique of factor analysis 13 where, in

our case, the unobservable is the true catch rate.4 It differs from a MIMIC model
in that we do not explain catch, and it differs from both models in that our

Ž .indicators observed catch are more closely related to the unobserved variable
Ž .expected catch than are indicators in a typical application of those models.

Although the application here is recreational fishing, the issues and theory apply
to any empirical setting where an average is used as an explanatory variable: for
example, human capital models that use the average of a number of IQ test scores,
rather than unobserved IQ, as an explanatory variable, and salary models that use
batting average, rather than the unobserved probability of getting a hit, as an

Ž w x. 5explanatory variable e.g., 29 .

3This method is not often implemented, however, because it is difficult to find an instrument that is
correlated with explanatory variables but not correlated with the error, and because the parameter
estimates are usually sensitive to the instrument chosen.

4 w xEnglin and Shonkwiler 7 consider cases where trip cost is unobserved, and propose a factor
analytic model that uses time, out-of-pocket expenses, and value of time as indicators of trip cost.

5Note that in both of these examples, as with recreational fishing sites, the number of observations
used to calculate each average will vary: individuals expected to have either high or low IQs take more
IQ tests, and the batting averages for those with high expected hit rates are based on more times at bat
than those of bad hitters.
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There is a general trend in recreational demand modeling and the maximum
likelihood estimation of these models to specify broader models and simultane-
ously estimate all of the parameters of those models.6 While this research is part of
that trend, it differs from it in that in most of these models piecemeal estimation is
consistent but not asymptotically efficient. Therefore, joint estimation buys only
asymptotic efficiency. In the situation analyzed here, two-stage estimators are
biased and inconsistent, while joint estimation is consistent and efficient.

This paper is organized as follows: First, to fix ideas, we discuss estimation of a
simple linear demand model for trips to several fishing sites. Demand for trips is
modeled as a function of demographic and site-specific variables, as well as the
site’s expected catch rate, where the expected catch rate is not observed, but where
there are multiple observed catch rates for each site. Then, discrete choice
estimation with the same kinds of data is presented, first in the simple dichotomous
setting, the probit model, and then in a repeated nested logit model. The final
section considers an example with relevance to environmental policy.

2. THE LINEAR REGRESSION MODEL

Assume that the number of trips to site j for individual i, y , is a linear functionji

of a set of K known, exogenous site and individual attributes, including travel cost,
site quality, etc., x , and the unknown expected catch rate at site j, cU :7

ji j

y s aX x q g cU q e , j s 1, . . . , n , i s 1, . . . , m , 1Ž .ji ji j ji

where m is the number of anglers, g and the elements of a are unknown
parameters to be estimated, and e is a mean-zero random disturbance withji

variance s 2.8 For purposes of exposition and notation in this section, we have note

Ž .explicitly included the attributes of other sites in 1 , since their inclusion would
not change the theoretical econometric results. Cross-site effects are included in
the empirical example. If the cU were known, linear regression of y on x and cU

j ji ji j
would result in unbiased and consistent estimation of a and g .

U Ž U U U .X XLet c s c , c , . . . , c and let X be the nm = K matrix with typical row x .1 2 n ji
Then the model expressed in matrix form is

y s Xa q g DcU q e , 2Ž .

6 For example, in the estimation of nested logit models there is increasing advocacy of FIML rather
than sequential estimation. In recreational demand models, it is increasingly common to estimate

Ž .determinants of travel cost such as the value of time as a percentage of wage along with the parameter
w xon travel cost. See, for example, 20 .

7The influence of expected catch on demand, g , could, for example, be assumed to be a function of
skill. In our empirical example, skill is a significant determinant of the influence of expected catch on
participation and site choice.

8 The model and analysis remain appropriate if cU represents some other unobservable determinantj
of demand.
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Ž .Xwhere y s y , . . . , y , . . . , y , the nm = n matrix D is defined by11 1m nm

i 0 ??? 0
0 i ??? 0
. . . .D s ,. . . .. . . .� 0
0 0 ??? i

w U x Ž X .X Ž .and i is the m = 1 vector of 1’s. Let W# s X B Dc , and let b s a g . Then 2
can be written as

y s W#b q e 3Ž .

and least squares produces

y1 y1X X X Xb̂ s W#W# W#y s b q W#W# W#e , 4Ž . Ž . Ž .
ˆ X X UŽ . Ž .where b s a g and the second equals sign is by substitution from 3 . Since cˆ ˆ

Ž X . X Ž .and the columns of X are assumed to be exogenous, E W#e s W#E e s 0 so
ˆŽ .that E b s b.

But the cU are not observed. Instead, suppose there are L reported catch ratesj j
for site j, c . These observed catch rates are subject to the vagaries of fishing, sojl
they are random variables. Assume each c is an unbiased estimate of the truejl
catch rate:

c s cU q d , j s 1, . . . , n , l s 1, . . . , L , 5Ž .jl j jl j

where d are mean-zero random disturbances with variance s 2.9 It is assumed thatjl d

the d are uncorrelated with each of the e . This is an implicit assumptionjl ji
whenever the average catch is used as an explanatory variable in a travel-cost
model. There is no question of corrrelation when the two data sets do not overlap,
as errors are not generated by the same decision-making units. For data sets that

9 More generally observed catch rate could be modeled as a function of skill, site experience, weather,
w xetc. This would be in the spirit of the MIMIC model of Joreskog and Goldberger 11 .

w xEnglin et al. 6 also jointly estimate catch rate and the catch parameter, but in a fundamentally
different model. Specifically, they specify catch as a function of variables that affect catch rate but not
number of trips:

cU s lXz q d , j s 1, . . . , n , 5XŽ .j j j

U U Ž X .where c is total catch and z is a set of environmental and angler-specific causes of c . Note that 5j j j
implies that cU is a random variable, but it is specified as parametric in the travel-cost component ofj

Žtheir model. This approach requires data that affect catch and not travel behavior to achieve
.identification of all model parameters , and requires the d and model disturbances to be uncorrelated.j

w xIn Englin and Shonkwiler 7 , price, rather than catch, is the variable measured with error. In lieu of
repeated measures of price, their solution to the measurement error is a factor analysis model where

Ž .p s cost, p s travel time, and p s wage = travel time are used as indicators of price. Equation 5j1 j2 j3
is replaced by

p s l pU q d , j s 1, . . . , m , l s 1, 2, 3. 5YŽ .jl j j jl

Ž Y .Equation 5 , while interesting, does not follow naturally from the standard assumption that inputs,
such as time and transportation services, are combined to produce trips, and that pU is the minimumj
cost of producing a trip. Note that since the p are only loosely associated with pU , the coefficients ljl j j
cannot be normalized to 1 as in our model.
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do overlap, e and the d are uncorrelated if fishing skill is not site specific, that is,ji jl

if skilled anglers are skilled at all sites and low-skilled anglers are low skilled at all
sites. Even if skill is site specific, e and the d will remain uncorrelated if theji jl

influence of expected catch is made a function of the individual’s skill at the site.
Denote the average of site j’s observed catch rates by c , wherej

Lj1
c s c ,Ýj jlLj ls1

X UŽ . Ž . w xand let c s c , . . . , c . Note that E c s c . Let W s X B Dc . A common estima-1 n
U Ž .tion strategy is to use c instead of c in 2 . To investigate the implications of this,

U Ž .replace c in 2 with c:

y s Xa q g Dc q v s Wb q v, 6Ž .
UŽ .where v s e q g D c y c . Then least squares produces

y1 y1X X X Xb s W W W y s b q W W W v. 7Ž . Ž . Ž .

Ž X .XIt is clear that b s a g , where a is an estimator of a and g is an estimator of g ,
is not an unbiased estimator of b since W and v are clearly correlated through

Ž .their common term c. It is easy to show that E g - g , when catch rate is the only
variable measured with error.10 The noise in average catch rate makes catch rate
appear less important than it is as a determinant of trip choice. All studies that use

Uc as a proxy for c , ceteris paribus, underestimate the influence of catch on
participation and site choice, and therefore underestimate willingness to pay for
policies that improve catch.

Ž . Ž .The analysis of 1 through 7 is all very reminiscent of the conventional
Ž .errors-in-variables model EVM , with two important differences. First, in the

EVM, the expected value of each observation on the variable measured with error
is an additional parameter, called a nuisance parameter, and here that role is
played by the cU. With an EVM, the number of parameters increases with thej

Ž . Ž .sample size, and there are more parameters n q K q 1 than observations n . In
the case at hand since there are repeated observations on cU , there are morej
observations than parameters, so estimation is possible. And second, these often-
called nuisance parameters in our case are important for demand prediction and
consumer welfare analysis.

3. MAXIMUM LIKELIHOOD ESTIMATION

X Ž . Ž .XDefine the vectors z s y , c , j s 1, . . . , n, where y s y , . . . , y and c sj j j j j1 jm j

Ž .X X Ž 2 2 .c , . . . , c . Define u s b, s , s . By assumption, the independence of ei1 i L e d jij

and d implies the independence of y and c . Therefore the density of z can bejl ji jl j
factored:

f z s f y = f c , 8Ž . Ž . Ž . Ž .j j j

10 w xSee 8, pp. 439]440 .
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Ž .where f ? are density functions of z , y , and c , determined by the argument of thej j j

function. If, for example, normality is assumed,11

1 1 y y bX wU
ji ji2X U y1f y s exp y y y b w s s f ,Ž . Ž .ji ji ji e2½ 5 ž /' s2s2p s eee

9Ž .
U1 1 c y cjl j2U y1f c s exp y c y c s s f ,Ž . Ž .jl jl j d2½ 5 ž /' s2s2p s ddd

U U 2'Ž . Ž . Ž .where w is the row of W corresponding to y and f a s 1r 2p exp y1r2 aji ji
Ž .is the density of a standard normal random variable. Define Z s z , . . . , z . Then1 n

the log-likelihood may be written as

< U 2 2log L Z b , c , s , sŽ .d e

s log f z s log f y q log f cŽ . Ž . Ž .Ý Ý Ý Ýj ji jlž /
j j i l

y y bX wU c y cU
ji ji jl jy1 y1s log s f q log s f . 10Ž .Ý Ý Ýe d½ 5½ 5 ž /ž /ž /s se dj i l

Insight into what this generalization of the model means toward the estimation of
the expected catch rates and the marginal effect of catch rate on number of trips
Ž .g can be obtained by examining the first-order conditions for the maximization of
the likelihood function with respect to a , g , cU , s 2, and s 2:e d

­ log L 1
X Us 0,« y y a x y g c x s 0, 11Ž . Ž .Ý Ý ji ji j ji2­ a se j i

­ log L 1
X U Us 0 « y y a x y g c c s 0, 12Ž . Ž .Ý Ý ji ji j j2­g se j i

­ log L 1
X Us 0 « y y a x y g c gŽ .Ý ji ji jU 2­ c sj e i

1
Uq c y c s 0, j s 1, . . . , n , 13Ž . Ž .Ý jl j2sd l

and
­ log L 1 1 2X U2s 0 « s s y y a x y g c , 14Ž . Ž .Ý Ýe ji ji j2 n L­s je j i

­ log L 1 1 2U2s 0 « s s c y c . 15Ž . Ž .Ý Ýd jl j2 n L­s jd j l

The maximum likelihood estimators are the values of all parameters that simulta-
ˆŽ . Ž . Žneously solve 11 through 15 the conventional estimator indicator ‘‘ ,’’ here and

.below, has been omitted for notational simplicity .

11 Normality is assumed here to facilitate the interpretation of the model. In the example in Section
5, the assumption of Poisson-distributed catch is employed.
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Ž . UFrom 12 by multiplying through by c and employing the linearity of thej
summation operators, the solution for g is

Ý 1rm Ý y y aX x cUŽ . Ž .j i ji ji j
g s . 16Ž .U 2Ý cj j

Ž . USubstituting this into 13 yields the solution, after some algebra, for c :j

Uc s mc q 1 y m c , j s 1, . . . , n , 17Ž . Ž .˜j j j

where
Lj

m s 18Ž .2L q mlgj

for l s s 2rs 2, andd e

1
Xc s y y a x . 19Ž . Ž .˜ Ýj ji jimg i

This c is the fixed-effects panel data estimator of cU obtained from only trip-tak-j̃ j

Ž .ing behavior. This can be seen by noting that, apart from the presence of g , 1 is
the usual formulation of a panel data model with cU taking the role of thej

Ugroup-specific effect. Note that the conventional estimator of c , c , would involvej j
catch data and not trip data, and would be solved from only the term after the plus

Ž .sign in 13 .
Since 0 F m F 1, the ML estimator of cU is a weighted average of the MLj

U UŽ .estimator of c in the absence of data on y c , and the ML estimator of c inj ji j j

Ž .the absence of data on c c . The relative weights associated with c and c˜ ˜jl j j j

reflect the confidence in the data on c and y . That is, l ª ` « m ª 0 and,jl ji

consequently, all weight is placed on c . Intuitively, a large value of l implies s 2 isj̃ e

small relative to s 2, so that there is relatively more noise in the c data.d jl
Conversely, l ª 0 « m ª 1 and, consequently, all weight is placed on c , as aj
large s 2 relative to s 2 implies there is relatively more noise in the y data. Ine d ji

Ž .fact, it is easy to show that the weights m and 1 y m are the normalized
reciprocals of the variances of the quantities they weight, c and c , making the ML˜j j

estimator of cU the optimally weighted linear combination of the two kinds ofj
Ž w x.information see 1, p. 130 . Finally, the ML estimator of g is the least squares

estimator of g with the estimated value of cU in place of the actual cU.j j
A large-sample interpretation of the estimator of cU is also possible. Supposej

UL ª `. Then m ª 1 and hence the ML estimator of c reduces to c , which isj j j

consistent when L ª `. Next suppose that L is fixed and m ª `. Then clearlyj j
m ª 0 and hence the ML estimator of cU reduces to c , which converges to˜j j

y1 Ž X . Ug E y y a x s c as m ª `. This contrasts with b, the least squares estima-ji ji j
Ž .tor using c defined in 7 , which is consistent in the sense that as min L ª `,j j j

plim Ly1 WX v s 0. However, the usual interest is in extending the sample size inj
the direction of m rather than L . Hence, for nonoverlapping data sets, leastj
squares is obviously inconsistent when m ª `; that is, it is inconsistent even if the
number of anglers in the travel-cost data set ª `. For overlapping data sets,
m ª ` implies L ª ` for some j, but does not imply min L ª `, so leastj j j
squares remains inconsistent.
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Note that a natural form of heteroscedasticity, unequal variances across sites, is
easily accommodated in this setting. In obvious notation, s is replaced with s ind d j

Ž .the likelihood, and the first-order condition 15 becomes

1 2U2s s c y c . 20Ž . Ž .Ýd jl jj Lj l

In both the homoscedastic and this heteroscedastic model, average catch rates with
larger variances receive less weight. With heteroscedasticity, a larger variance
could be the result of either fewer observed catch rates or a larger site-specific

Ž 2 2 .variance, while with constant variance s s s for all j the influence of averaged dj

catch rate depends only on L .j

4. DISCRETE CHOICE MODELS

Suppose now that the model, for all j and i, is

yU s aX x q g cU q e , j s 1, . . . , n , i s 1, . . . , m , 21Ž .ji ji j ji

where yU is defined as the net utility of visiting site j. The difference between thisji
model and the model above is that the yU are not observed. Instead, a dichoto-ji
mous indicator of site choice is known:

1 if yU ) 0,jiy s 22Ž .ji ½ 0, otherwise,

where y is redefined such that y s 1 if individual i visited site j during theji ji
season and y s 0 otherwise. This model is designed to estimate fishing choiceji
when the data set reports whether individual i visited site j but not how many trips
he or she took.

This is the conventional probit model, given the normality assumption for e ,ji
except cU is not observed.12 The probability that y s 1 is given byj ji

Pr y s 1 s Pr yU ) 0 s Pr e ) yaX x y g cUŽ .Ž . Ž .ji ji ji ji j

aX x q g cU
ji jX Us 1 y Pr e - ya x y g c s 1 y F yŽ .ji ji j ž /se

aX x q g cU
defji js F s F , 23Ž .jž /se

Ž .where F a is the cumulative distribution function of a standard normal random
Ž . Ž .variable, and use has been made of its symmetry: F a s 1 y F ya . Of course,

Ž . Ž .Pr y s 0 s 1 y Pr y s 1 . As in the linear regression model, c is observed asji ji jl
U Ž Ž ..an imperfect measure of c see 5 . Now the likelihood is of the mixedj

12 w xMorikawa et al. 24 consider unobserved explanatory variables in a binary probit model. Their
w xmodel differs from ours in that, like Englin et al. 6 , they assume the unobserved variable is a function

of other variables and errors.
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discretercontinuous type. With z and u defined as above, by the assumption ofj

the independence of e and d the density of z can be factored:ji jl j

f z s Pr y = f c , 24Ž . Ž . Ž . Ž .j j j

so that the log-likelihood is

< U Ulog L Z u , c , . . . , cŽ .1 n

s log Pr y q log f cŽ . Ž .Ý Ý Ýji jlž /
j i l

Uc y cjl jy1s log y F q 1 y y 1 y F q log s f . 25Ž .Ž . Ž .Ý Ý Ýji j ji j d ž /ž /sdj i l

Maximization of the likelihood again produces consistent, asymptotically efficient
estimates of u and the cU.j

Now consider a repeated nested logit model of participation and site choice that
is designed to be estimated with a data set that reports, for the season, the number
of trips each sampled individual takes to each of the n sites.13 Assume the season
consists of T periods such that in each period the individual takes at most one trip.
In each period, the individual simultaneously decides both whether to fish at one of
the n sites, and if so, which one.

Assume the utility individual i receives in period t if he chooses alternative j is

yU s aX x q g cU q e , j s 0, . . . , n , 26Ž .ji t ji t j ji t

where j s 0 is the nonfishing alternative and the expected catch rate for nonfish-
Ž .Xing is 0. Further assume that the e s e , . . . , e are drawn independently ini t 0 i t ni t

each period from the generalized extreme value distribution

1rsn

F e s exp yexp ye y exp se , 27Ž . Ž . Ž . Ž .Ýi t 0 i t ji t½ 5
js1

where s is a parameter that influences the degree of unobserved correlation
between the utility from fishing trips. The yU are, of course, unobserved. Theji t
observed variable is y , defined byji t

1 if yU ) yU for all jX / j,ji t ji ty s 28Ž .ji t ½ 0 otherwise.

It is straightforward to show that

exp aX xŽ .0 i t
Pr y s 1 s 29Ž . Ž .0 i t 1rsX X Unexp a x q Ý exp s a x q g cŽ . Ž .Ž .0 i t js1 ji t j

13 w x w xThe nested logit model was developed by McFadden 16 . Morey 17 provides a general introduc-
tion to repeated nested logit models of recreational participation and site choice.
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and

1rsy1X XU Un
Xexp s a x q g c Ý exp s a x q g cŽ . Ž .Ž . Ž .j i t j js1 ji t j

XPr y s 1 s ,Ž .j i t 1rsX X Unexp a x q Ý exp s a x q g cŽ . Ž .Ž .0 i t js1 ji t j

jX s 1, . . . , n. 30Ž .

Note that since the expected catch rates are unobserved, they must be estimated
Ž .along with the other parameters. Define y equal to an n q 1 = 1 vector, wherei

the first element is the number of times individual i chooses not to fish and the
remaining elements are the number of trips individual i takes to each of the n

Ž .sites. That is, a typical element of y is y s Ý y . Let Y s y , . . . , y , andi ji t ji t 1 m
Ž 2 .similarly define X. Let V s m , b, s , s . Then the likelihood function is0 d

L Ujn m T c y cjl jU U y1<L Y, X V , c , . . . , c s y log Pr y q log s f .Ž .Ž . Ý Ý Ý Ý1 n ji ji t d ž /ž /sdjs0 is1 ts1 ls1

31Ž .

Expected catch rates and the parameter on catch in a repeated nested logit
w xtravel-cost model were jointly estimated by 31 assuming catch is normally dis-

tributed.

5. EMPIRICAL EXAMPLE: NATURAL RESOURCE DAMAGE
ASSESSMENT IN MONTANA

w xThe Montana study 20 demonstrates the importance of estimating the catch
rates jointly with the other parameters in a travel-cost model, including the
parameters on catch. A nested-logit model was used to estimate participation and
site choice for 443 trout anglers. The choice set included 26 river segments, listed
in the first column of Table I.

ŽTrip catch and number of hours fished were collected from 1344 trips each trip
.is by a different angler to the 26 sites, where 443 of these trips are by the 443

individuals in the travel-cost data set, so there is 33% overlap between the two data
sets. The data on catch and hours fished are summarized in columns 2]4 of Table
I. The sites are listed in descending order of the total number of hours for which
catch data are available. In spite of the fact that the interviewers spent approxi-
mately equal time at each site recording fishing times and catch, the number of

Ž . Žtrips for which there is catch data varies from 172 at Madison 2 to 8 at Little
.Blackfoot . The total number of hours of fishing for which catch is recorded varies

Ž . Ž .even more, from 847.13 at Madison 2 to 7.48 at Warm Springs Creek . Such
significant variation in hours andror trip for which catch is observed is expected
and should be a characteristic of most data sets on catch; there is more fishing at
sites with high catch rates than at sites with low catch rates, so there are more
hours of fishing to observe. There are no fish in Silver Bow Creek, and no one was
observed fishing there. It is included in the choice set because it would be an
excellent trout stream in the absence of environmental injury.

Since catch is nonnegative integer data, another, perhaps superior stochastic
model for catch is the Poisson distribution. This was the assumption for catch data
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w x w xused in 20 . A Poisson distribution for recreational catch was first suggested by 15
Ž w x.see also 6 . Specifically, assume that catch has a Poisson distribution such that
the probability of catching h fish in h hours of fishing is given byjl jl

h jlU Uexp yh c h cŽ . Ž .jl j jl j
Pr h s . 32Ž . Ž .jl h !jl

With a random sample on h , l s 1, . . . , L , one estimate of a site’s catch rate isjl j
the ratio of the total number of fish caught at that site to the total number of hours
fished. This simple Poisson average catch rate is the maximum likelihood estimate
of cU in the absence of other data, and is reported in column 4 of Table I.14

j
However, as explained above, this is not the best estimate of the catch rate when
trip data are available. Using the trip and catch data for the 443 anglers, the 26
catch rates were jointly estimated with the other parameters in the travel-cost
model, including the parameters on catch, travel costs, and other site characteris-
tics. These included site size, measures of accessibility, aesthetics, and availability

14 Ž .Note that the likelihood function is the final additive term in Eq. 31 .

TABLE I
Catch Data and Catch Rate Estimates

Total Simple
Observed Number of observed Poisson Expected

U UUnumber fish hours of catch rate catch rate
Ž . Ž .River Segment of trips caught fishing rank rank

Ž . Ž .Madison 2 172 615 847.13 0.7260 12 0.7260 13
Ž . Ž .Beaverhead 91 294 464.38 0.6331 15 0.6366 15
Ž . Ž .Rock Creek 109 394 406.37 0.9696 5 0.9262 2
Ž . Ž .Yellowstone 69 129 367.47 0.3511 20 0.3817 20
Ž . Ž .Missouri 102 232 345.45 0.6716 14 0.7604 10
Ž . Ž .Madison 1 83 132 341.48 0.3865 18 0.4128 19
Ž . Ž .Big Hole 1 77 265 314.65 0.8422 9 0.8985 3
Ž . Ž .Bitterroot 2 59 163 222.02 0.7342 11 0.7391 11
Ž . Ž .Jefferson 2 50 59 200.35 0.2945 24 0.3259 21
Ž . Ž .Big Hole 2 29 137 156.78 0.8738 8 0.8116 7
Ž . Ž .Middle Clark Fork 58 78 150.80 0.5172 16 0.4465 16
Ž . Ž .Gallatin 59 130 148.18 0.8773 7 0.8842 4
Ž . Ž .Jefferson 1 41 44 140.15 0.3140 23 0.2801 22
Ž . Ž .Upper Clark Fork 1 58 45 116.65 0.3858 19 0.4340 17
Ž . Ž .Blackfoot 50 32 97.28 0.3289 21 0.2672 23
Ž . Ž .Bitterroot 1 39 25 79.12 0.3160 22 0.2398 24
Ž . Ž .Upper Clark Fork 5 30 58 71.45 0.8118 10 0.7838 8
Ž . Ž .East Gallatin 41 98 66.33 1.4774 2 1.0510 1
Ž . Ž .Flint Creek 53 62 65.28 0.9497 6 0.8767 5
Ž . Ž .Upper Clark Fork 3 18 20 43.77 0.4570 17 0.4233 18
Ž . Ž .Lolo Creek 17 49 43.58 1.12243 4 0.6826 14
Ž . Ž .Upper Clark Fork 2 12 7 25.62 0.2733 25 0.2217 25
Ž . Ž .Upper Clark Fork 4 9 32 21.23 1.5071 2 0.8455 6
Ž . Ž .Lower Blackfoot 8 10 14.08 0.7101 13 0.7309 12
Ž . Ž .Warm Springs Creek 10 14 7.48 1.8708 1 0.7707 9

Ž . Ž .Silver Bow Creek 0 0 0.0 0.0 26 0.0 26
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TABLE II
UEstimated Parameters on Catch and Travel Cost

Model Catch parameter Travel-cost parameter

Ž .Catch rates and parameter 0.126 q 0.02604 skill level y0.00722
Ž . Ž . Ž .jointly estimated 1.581 1.633 3.739

Ž . Ž .Nonjoint sequential estimation using the y0.030 q 0.01601 skill level y0.006507
Ž . Ž . Ž .simple Poisson average catch rates 0.572 1.522 3.845

* For resident anglers. Numbers in parentheses are t statistics.

of camping. Many angler characteristics were also included. The likelihood under
this stochastic assumption for catch is

< U U 2log L Z b , c , . . . , c , s s y log Pr y s 1 q log Pr h , 33Ž . Ž .Ž .Ž . Ý Ý Ý1 n e ji ji jlž /
j i l

Ž . Ž .where the first probability is from 29 and 30 , and the second probability is from
Ž . 1532 . The jointly estimated catch rates are reported in column 5 of Table I. Note

Ž .that columns 4 and 5 are quite similar with a correlation of 0.79 , except at those
sites with few observed hours of fishing. For example, the simple average for Upper
Clark Fork is 1.5 fishrhour, based on 21 hours of reported catch from nine trips,
but the jointly estimated expected catch rate is 0.85. In contrast, Beaverhead, with
464.4 hours of observed catch from 172 trips, has a simple Poisson average catch of
0.6331 and a jointly estimated expected catch of 0.6366.

The estimated coefficients on catch and travel cost for resident anglers are
reported in row 1 of Table II. Note that the parameter on expected catch rate is a
function of the skill level of the angler. Row 2 reports the same parameters for

Žconventional estimation when the simple Poisson average catch rate is used as a
. 16proxy . For both simultaneous and conventional estimation, likelihood ratio tests

indicate that travel cost and expected catch are significant determinants of choice.
The two travel-cost parameters are very similar, but the estimated impact of catch
when estimated conventionally has a significant downward bias.

6. SUMMARY

Econometric theory tells us that using the average of the observed catch rates at
a site as a proxy for the expected catch rate at a site will make catch appear less
important than it is as a determinant of participation and site choice. An empirical
example shows that the downward bias can be substantial. The existing literature
on recreational fishing demand has therefore underestimated the impact of catch

15 To anchor the expected catch rates, the expected catch rate for Madison 2 was fixed at its simple
Poisson average, 0.7260.

16 Note that, when conventionally estimated, the catch parameter has the wrong sign for anglers with
Žvery low skill levels level 1 only; the range on skill was 1 to 7, the average for residents in the sample

.was 4.86 . Seven anglers have a skill level of 1.
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rates on participation and site choice. Consistent and efficient estimates of ex-
pected catch rates and the parameters in the demand functions can be obtained by
simultaneously estimating them in a maximum likelihood framework. As demon-
strated, empirical implementation is straightforward for simple trip demand mod-
els, discrete choice models of participation, and repeated nested logit models of
participation and site choice.
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