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Using Actual and Contingent Behavior Data
with Differing Levels of Time Aggregation

to Model Recreation Demand

Trudy A. Cameron, W. Douglass Shaw, Shannon E. Ragland,
J. Mac Callaway, and Sally Keefe

A model of recreation demand is developed to determine the role of water levels in

determining participation at and frequency of trips taken to various federal reservoirs

and rivers in the Columbia River Basin. Contingent behavior data are required to

break the near-perfect multicollinearities among water levels at some waters. We

combine demand data for each survey respondent at different levels of time aggre-

gation (summer months, rest of year, and annual), and our empirical models accom-

modate the natural heteroskedasticity that results. Our empirical results show it to be

quite important to control carefully for survey nonresponse bias.

Key words: contingent behavior, recreation demand, travel cost model

Introduction

Due to public concern about anadromous fish species in the Columbia River system,

policies which help such species to migrate are being considered. Some of these policies
involve substantial seasonal changes in water levels behind Columbia River dams. Pol-
icies which help salmon migrate will reduce the quality of reservoir recreation. These

reservoir recreation opportunities, at least for some people, are likely more valued than

salmon enhancement.
This study was designed to meet the needs of the federal agencies that manage the

waters in the Columbia River Basin. These are (a) to estimate how often individuals
would take trips to each of several federal waters under various patterns of water levels
(either actual or proposed), and (b) to estimate recreational values of each of these waters
under current conditions and with changes in the pattern of water levels.
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We derive recreational values with an individual travel cost model (TCM). 1 Other
studies have investigated reservoir management issues similar to the ones faced here

(Cordell and Bergstrom; Bendel and Stratis; Ward). Our approach contributes to recre-
ation valuation methodology by using contingent behavior data as a supplement to actual

behavioral data and correcting for possible sample selection bias. Our study uses panel

data and corrections for heteroskedasticity are included in both the probit and the con-

tinuous models that make up our demand specification. Few recreation studies have used

panel data (some exceptions are Cole et al. and Englin and Cameron 1996.) No previous

recreation studies employ observations for each individual at different levels of time

aggregation.

The Data and Key Modeling Considerations

We develop the recreation demand model for each of nine specific federal waters in the

Columbia River Basin: Hungry Horse, Dworshak, and Lower Granite reservoirs; Roo-

sevelt, Umatilla, Koocanusa, and Pend Oreille lakes; and the Kootenai and Clearwater

Rivers. We estimate our models using data collected through a mail survey administered

in the fall of 1993.2 For each person, we potentially have four time-series observations
on actual water-based recreational trips to each project for May, June, July, and August

of 1993 (along with the actual water levels for each project for each of these months

and total annual trips to each water). We also have two additional observations, called

contingent behavior (CB) data (eg., Cameron; Englin and Cameron 1996).

CB responses are elicited with the aid of computer-enhanced photographs and graph-

ical and verbal depictions of possible water level changes. 3 An individual is allowed to

state that he would or would not (or does not know if he would) take a different number

of trips to each regional project under a set of hypothetical, as opposed to the actual,

water levels in 1993. If he would take a different number of trips, he is asked how many

more or fewer trips he would take to each regional water. CB questions are important

here for two main reasons. First, some of the water level policies that must be analyzed

represent drastic departures from the relatively small variations in water levels that pre-

vailed during 1993 (a relatively dry year, as compared with the historical average). By

extending the domain of our model through the use of contingent scenarios, we alleviate

the inherent problem of out-of-sample forecasting that will plague any attempt to predict

behavior under several plausible policy scenarios. The contingent scenarios let us anchor

these forecasts in part upon stated behaviors, rather than leaving the forecasting results

to depend entirely upon the effects of small variations in water levels simply propagated
through the particular functional form of the model.

Second, while observed actual monthly water levels at the various waters could in

In our study it is imperative that trips and values be estimated for each, not just one, of the waters. In addition, the model

must accommodate all types of water-based recreation. For recent reviews of recreation demand modeling see Bockstael,

McConnell, and Strand.
2 Four versions of the survey were designed and implemented following parts of Dillman's total design method. Professor

Dillman's survey center at Washington State University assisted in survey design, including conducting focus groups to

develop survey materials. While Dillman's total method calls for several follow up or reminder steps to maximize response

rates, the research project schedule and budget did not allow this. Other survey design, implementation, and model details

are provided in Callaway et al.
3 A copy of the survey insert, including the color computer-enhanced photographs, is available on request. Thanks go to

Matt Rae and other key ACE members for these photographs.
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principle be used to explain monthly demands, these monthly water levels have been
highly collinear across waters in the historical data.4 Using the actual 1993 data alone,
it would be impossible to discern the separate effects of varying each water level inde-
pendently while holding the others constant. Since possible policy scenarios involve
departures from the usual contemporaneous geographical pattern of water levels, it is
imperative to isolate these separate effects.

We handle the large number of possible reallocations of trips (substitution) between
waters by assuming that survey respondents choose a destination from a set of federal
waters (or an aggregate of other waters) in a large region. The water levels at the chosen
destination and at other waters are considered when choosing that destination. We collect
trip information (travel costs) to each of the projects and to "all other" waters in the
same region. (Data previously collected indicated that the vast majority of trips taken by
those that live in the Columbia River Basin are to nearby or regional waters.) Some
waters are included in as man as three of these different survey regions. Responses
regarding any particular water are pooled across regional versions of the survey. Thus,
the demand for a particular water can be estimated as a function of responses and char-
acteristics of all the individuals in the sample who had an opportunity to report a trip to
that project.5 Lastly, to accommodate different types of recreators, we use intercept dum-
my variables for the type of recreator each individual appears to be (holder of fishing
license, boat owner, or both).

The Sample

Our sample includes several categories of respondents. We drew an approximately ran-
dom sample of members of the general population of the Pacific Northwest (PNW) whose
addresses were obtained from local telephone listings. This group was drawn from be-
cause we wanted to allow nonrecreators in this group to recreate in response to increasing
water levels and because we wanted to be able to explore possible differences between
the general population and known recreators. An oversampled pool of residents from
counties adjacent to the nine federal waters considered in the analysis were used to
increase survey response rates. Actual recreators were intercepted while at the federal
waters and asked to participate in the study by mailing in a postcard containing their
addresses. This group was surveyed so that some individuals in the sample were known
to have actually seen the waters and existing conditions at them. Finally, a random sample
of willing volunteers from an earlier survey effort (Callaway, Shaw, and Ragland) was
taken, also to increase response rates.

Some possible biases from these four sample groups could exist if not accommodated

4 As a preview, this multicollinearity was evidenced by its classic symptoms, namely, drastically changing parameters as
alternative water levels are dropped in and out of the model, and insignificance in the "own" water level when accompanied
by these alternatives. Further, simple correlation coefficients showed evidence of a strong linear positive or negative rela-
tionship between water levels in several instances. For example, the correlation coefficient for actual water levels at Albeni
Falls and Hungry Horse is 0.98. Using the hypothetical levels posed in the questions for version 1 and coupled with the
actual water levels decreases this correlation coefficient to 0.26.

5 An anonymous referee points out that waters which appear multiple times because they are on different surveys could
lead to visitors/trips being overrepresented in an analysis. This might be especially problematic if one aggregated results
across the waters. However, as will be seen below, we adjust for this using survey version specific variables in our selectivity
model. In addition, we have separate demand models for each water and the main effect in our analysis of having different
numbers of visitors/trips is that some models are estimated for larger subsamples and thus have smaller sample variances for
the parameters, ceteris paribus. We do not attempt to aggregate trips or consumer's surplus across water demand functions.
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for explicitly, as we do. We had limited means of using other methods to increase re-
sponse rates (see footnote 2). For example, because of their level of interest in the topic,
we expected nonrecreators in the general population group to be less likely to return the
survey than people who visited the waters. We adjust for systematic differences in re-
sponse rates between our general population sample and the other specialized samples
by explicitly modeling response/nonresponse decisions for our full intended sample.

The Theoretical Model

The focus of our analysis is the average individual monthly summer season (May through
August) demand for a recreational water, measured in number of trips, and corrected for
nonresponse bias.6 The rest-of-year demand is incorporated solely to complement the set
of disaggregated summer monthly demands and thereby to facilitate combining (for each
individual) the four actual monthly observations with the three actual and contingent
annual observations also employed for estimation of our model.

The Basic Model

Begin by establishing some notational conventions. Let t = 5, 6, 7, 8 denote monthly
data for May, June, July, and August, respectively. For annual data, let T = A, B, C
denote actual 1993 conditions, the first contingent water level scenario, and the second
contingent scenario, respectively. Let r denote "rest of year." Let X be a vector of
individual-specific socioeconomic determinants of demand (including travel costs) that
do not vary over time during the summer months.7 Z, is a vector of socioeconomic or
other determinants of demand that do vary over time during the summer months, and
W, is a vector of monthly water levels at all nine main waters in each of May through
August.

Individual summer monthly demands (qt) can thus be expressed as

(1) qt = X1 + Ztz + WKT + e, , t= 5, 6, 7, 8.

Rest-of-year demand (qr) can be expressed as

(2) qr = Xrx + ER.

This specification is used because off-season water levels are not available and, in any
event, are not likely to vary as dramatically across policy scenarios as will summer

season water levels. Annual demand (q,) can be expressed as the sum of the four summer
monthly demands and rest-of-year demands:

(3) qT = (t8=5 (X'tx + Zt3P + WtP3)) + (Xryx) + eT, T = A, B, C.

When T = A, we have actual annual demand. We also have analogous contingent annual

demands from the two contingent behavior questions, denoted qB and qc.

6 An alternative approach to ours, with a focus on water level changes at several different reservoirs was implemented by
Ward. In Ward's application however, the water level change modeled is a total removal of water, which is actually simulated
by changing the site price until zero visits occur at the site. Our approach differs mainly because we examine less severe
reductions (and increases) in water levels using a water level variable within the model.

7 Callaway et al. provides details on construction of the travel costs or implicit travel prices.
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Adjustments to the Basic Theoretical Model

Note that we have trip and water level information on a month-by-month basis for only
the summer months. To be able to express annual demand as a function of average peak-
use season water levels, we divide the sum of the water levels in May through August

by 4: (W, + W6 + W, + W5)/4. Thus, we need to use qA14 for actual 1993 annual demand
(and q1/4 and qc/4, analogously). 8

Annual demands can therefore be expressed as a function of average summer water
levels as follows:

(4) qA/4 = X'3x, + (SZt/4)'z3q + (IWt/4)'f3w + (X,/4)'y + EA,/4.

The simplification of the first term is possible because X is time invariant. The same

equation holds for q1/4 and qJ4. Thus, the same parameters, ,(3, ,3, 8,, and yP, appear
in all eight demand equations. 9 Arrayed similarly, the correspondences between the pa-

rameters are clear. The four monthly observations are

q5 = X'3x + ZP3z + Ws5w + O'yx + E5,

q6 = Xf3x + Z6Pz + W6Pw + O'1 x + 6,

q7 = X'x + Z7Pz + W73w + o'/x + 7,

and

q8 = Xf3x + Z83z + W8fw + o'yx + E6.

The rest-of-year observations are

qr = 0 + O'3z + 0',3 + Xr Ty, + er,

and the three annual observations are

q,/4 = X'f3 + (EZt/4)'f3 + (EWt/4)'Pw + (Xr/4)'yx + eA/4,

qB/4 = X'3P + (YEZ/4)' 3z + (YW,/4)' 3 + (Xr/4)' x + EB/4,

and

qc/4 = X'3,8 + (EZt/4)'P + (EWt/4)'13w + (Xr/4)'xy + Ec/4.

For us to combine these different observations in a single model, summer monthly plus
rest-of-year demands must sum to annual demand. This places strong restrictions on
viable functional forms for the demand equations: they must be linear in qt (or qT14)

and linear in parameters. Note also that the information in q/A4 is redundant with the
information in q5 through q8 plus q,, so qA data will be dropped from the estimating
models.

8 If we combine data at two different levels of time-aggregation, without appropriate scaling, the estimated parameters
cannot be directly compared-not if it is just a linear transformation as in (4).

9 Some respondents, who declined to answer the contingent behavior questions, have only six pieces of demand information
each.
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The Empirical Model

In this section we discuss how the theoretical model above is adapted so that it can be
estimated using our data. First, we discuss corrections for nonresponse bias. Then we
discuss the intuition behind our two-stage recreation demand model.

Survey ResponselNonresponse Sample Selection Model

Use of missing socioeconomic data and econometric tests for selection bias is not new
(e.g., Little and Rubin; Dubin and Rivers), but most previous tests for bias in valuation
studies require data on nonrespondents obtained in a follow-up survey (Whitehead, Gro-
othuis, and Blomquist; Mattsson and Li). By merging on the basis of five-digit zip codes,
we combine 1990 census data with the rest of the known characteristics for all the origins
in our targeted sample. We use these data to estimate the probabilities that each targeted
household provides a complete response to each of the two crucial sections of our survey.
The inverse Mill's ratios (IMRs) for these probabilities are then used to effect selectivity
corrections in our subsequent set of recreation demand models (Heckman; Dubin and
Rivers).

For each regional version of the survey, two preliminary probit models explain the
probability that the individual returned the survey with enough information to model
actual trips and trips under the contingent scenarios. We use the pair of IMR variables
from the response/nonresponse models-one for the actual demand information and one
for the contingent demand information-as additional explanatory variables to control
for heterogeneity in propensities to return or complete the survey.

In rigorous joint models, the coefficients on these IMR variables are usually interpreted
as the product of the error correlation (between the latent propensity-to-respond variable
and the observed demand variable) and the error standard deviation of the demand vari-
able. Since the standard deviation is necessarily positive and nonzero, a statistically
significant coefficient estimate implies the sign of the error correlation. Simulating the
expected demand under true random sampling is accomplished by simulating a zero error
correlation (which amounts to zeroing out the IMR terms in the demand model).

Empirical Demand Specification

We estimate the demand for trips to each project in two stages. In the first stage, the
probability that the individual recreator takes positive trips to a particular project j is
estimated. In the second stage, the continuous model of number of trips to project j is
estimated, conditional on an individual having taken at least one trip to project j. This
specification is somewhat like a common maximum likelihood estimation (MLE) tobit
model, generalized to allow for two different "indexes": G', 3g explains the zero-trips/
positive-trips choice, and H',3h explains the number of trips, given that trips are positive.

The probability of taking some positive number of trips is (D(G'fg). Thus, the inverse
Mill's ratio for positive trips is AG = 4(G'/,3)/[1-< (G',83)]. The expression for expected
trips, given that positive trips are taken, is H',3h. Thus, the appropriate expression for
unconditional expected trips is iP(G'3g) [(H'Ph + pA-G)].

The variables and parameters in G',B3 , the index that determines zero versus positive
trips, are G = (X, Z,, W, Xr) and ,3g = (,/3, ,/3 , yr3, ). Descriptions of the elements of
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Table 1. Variables in Recreation Demand Models

Variable Name Description

RINT, RJMR-ACTUAL,
R_VERSIONI

R_VERSION4

OWN PRICE

FISH-LICENSE, OWN BOAT,
FISH & BOAT

PRICEd_-PRICE9
WTRLVL1-WTRLVL9

HAVE-DIST
HAVE-INC, INCOME

DIST-OTHER
VERSION1-VERSION4

IMR-ACTUAL and IMR-CONT

NE TRIPS

Rest-of-year demand models variables; form link between monthly
and annual demands

Analogous to similarly named variables for monthly and annual
observations, below

The own price of the water visit, equal to round-trip distance cal-
culated using the program ZIPFIP,a multiplied by the DOT esti-
mate of 29 cents per mile for operating a vehicle, plus lodging
costs, plus the opportunity cost of time in travelb

These are the intercept shifter dummy corresponds: 1 if the indi-
vidual had a fishing license in 1993, owned a boat, had a fish-
ing license and owned a boat

Cross price terms for each of the nine other waters
The own water level for water x is reported as Wx for each of the

models, the others from W1-W9 are the potential cross project
water levels

1 if distance data were available for this individual; else 0
1 if income reported for this individual; else 0, and annual income

for 1993, if income data reported
Average price or distance for the other five closest waters ????
Intercept shifter dummy for different survey versions when data

are pooled
Inverse Mill's ratios from the initial probit survey response models

(revealed preference and stated preference response/nonresponse
sample selection)

The total number of water-based recreation trips reported in each
month for the Northeast (controls for seasonal trip-taking behav-
ior independent of historical water-level management in Pacific
Northwest)

Note: Models also include intercept terms and dummy variables for whether the trips are taking place
in the main summer months or during the remainder of the year.
a ZIPFIP calculated the road distance between two places using the latitude and longitude of the centroids
for the respective zip codes. Comparison with the distances published in the AAA road atlas showed
ZIPFIP estimates to be reasonably accurate.
b Lodging costs are the sample average reported for each project by distance zone (<25 miles, 26-149
miles, and > 149 miles). Opportunity cost of time is calculated for each individual by multiplying round-
trip distance divided by 40 mph assumed average speed, multiplied by the reported hourly wage rate
(Shaw).

the variable vectors are presented in table 1. X includes the price (travel cost) to the
project in question and to alternative water recreational opportunities, income, and other
individual-specific variables. For some waters, Z, includes a July/August month dummy
variable and an independent measure of the tendency to take trips in peak summer months
(calculated using average monthly water-based recreation trips from data for the north-
eastern U.S.). 10

10 The July/August dummy was not important for some of the separate empirical model specifications. We thank Dr. George
Parsons for providing estimates of the total number of trips by month from his New England recreation data set. We use
these estimates to proxy any unobservable U.S. cultural tendency to take a trip in May, June, July, or August. We also note
that this variable will not be correlated with water levels in the Columbia River Basin, whereas use of the obvious choice
of historical trip data, from the same actual region of the Pacific NW, might create a problem of endogeneity bias.
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Our specifications allow the variables in H to be different from those in G and also
allow the elements of ph to differ from those of g,, which is more general than in the
traditional tobit specification, where H and G are identical and Ph = 3g.

Correction for Heteroskedasticity. We have been careful to scale all of our data so
that the effective unit of observation is either a summer month or a summer monthly
average. Still, the error terms can be expected to be heteroskedastic due to the presence
in the estimating specification of trip data pertaining to three different time intervals:
monthly, rest of year, and annual. All error variances in our specifications are therefore
modeled as differing systematically across these three data types. For tractability, how-
ever, we assume that the errors are homoskedastic within each of these categories. The
correction for heteroskedasticity is fairly general when viewed in the context of the
maximum-likelihood estimation method, and both are discussed in the next section.

The Likelihood Function

It will facilitate exposition of our estimation method to review a conventional tobit log-
likelihood function under homoskedasticity. Let Ii = 1 if qi > 0, Ii = 0 if qi = 0. With
a single index, G'13g, this function is

(5) max log L = E log { 1 - ((G' PgJg)}
1pg, g I=0

-(1/2){log(2rr) + log ( 2 + [(qi - G'3g)2Ig]}.
I=1

Heteroskedasticity across the three different data types (i.e., monthly, rest of year, and
annual) and the use of two different indexes, G'P,8g and H'f3h, in the discrete and contin-
uous portions of the model requires a more general specification.

It is very difficult to estimate the objective function for the requisite nonlinear opti-
mization problem, so we use a two-stage estimation process. The first stage is a heter-
oskedastic probit model, with different error variances for monthly, rest-of-year, and
annual observations:

(6) max log= og= g {lg (G'/g)} + (1 -Ii)log{ 1 -(G',3g)}
/
3
g, , 8T i

+ (1 - log {(G /exp())} + 1 -)log (G'3g/exp(5r))}
i

T

+ EIlog {(1G'Pg/exp(6r)) +(1- i)log{ + 1 - d(G',1g/exp(S))},
i

where 1t signifies the sum over all monthly observations; 2^ signifies the sum over all
rest-of-year observations; and [T signifies the sum over the annual observations, which
are both contingent since the redundant actual annual data have been dropped.11 The
error standard deviation for the monthly data is normalized to unity (or, equivalently, P3g
is actually P3*/,g). Defining the indicator variables Dr = 1 for rest-of-year data, 0 oth-

1 All actual data are revealed in the notation by summing over the monthly summer data and the rest-of-year data-it
would therefore be redundant to include the actuals in the summation from i to T.
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erwise, and DT = 1 for annual data, 0 otherwise, allows the index to be generalized to
G',3g/exp(8,Dr + STDT). From this, we save the fitted inverse Mill's ratio: AG = (S(G'f3gl

exp(8DP + 8TDT))/[1 - (I(G'w3g/exp(5rDr + 8TDT))].

The second stage is heteroskedastic least squares by maximum likelihood on only those
observations with positive trips: 12

(7) max log L = > -(1/2){log(2rr) + log(o2exp(8*Dr + 68DT))
Ph, r, r I 1

+ [(qi - H'P3h)2/(o2exp(*Dr + S*DT))]},

where H includes AG interacted with dummies for monthly, rest-of-year, and annual data

types. This is because the coefficient on this inverse Mill's ratio is interpreted as the

product of an error correlation and the demand-equation error standard deviation. Since

the error standard deviation will differ according to observation type, the coefficient on

AG must also differ by observation type. Likewise, the usually constant a2 again differs

across the three data types to accommodate the heteroskedasticity in our data.' 3

Derivation of Approximate Consumer's Surplus (WTP)

An individual's WTP to bring about a change in water levels can be defined in terms of

expected consumer's surplus (E[CS]). The E[CS] for an individual facing a change in

water levels is

rw,
(8) E[CS] = Q*(PIE) dF(E) dW,

JwO

where Q* ( * ) is the observed demand at initial water level WO (conditional on E), and

W, is the water level after the change.
Because of complexities associated with actually calculating E[CS] for each individual

(Hellerstein) and for every water level change that needs to be considered, we actually
approximate E[CS] for a given water level by estimating the area under the unconditional
expected trip demand function from individual observed price up to the individual's choke

price. To derive E[CS] for a change in water levels, we repeat this for a different water

level and subtract the difference between the two areas to estimate the E[CS] for the

water level change.
From the above, we know that unconditional expected trips are

12 While there are no I=0 limit observations in the log-likelihood function in (7), we use the tobit procedure in LIMDEP
for the second stage because this algorithm conveniently allows for heteroskedastic errors and permits us to take advantage
of the higher-level language of LIMDEP. The one problem with relying on this packaged algorithm is that the LIMDEP
output for this second stage reports t-test statistics that do not correct for the presence of estimated regressors (the AG
variables). While we report the t-statistics from the LIMDEP output, we note that these are derived from a variance-covariance
matrix has not been corrected.

13 We have programmed a full information maximum-likelihood algorithm that allows simultaneous estimation of the two
sets of slope and intercept parameters, Pg and 3,, as well as the conditional heteroskedastic error variance parameters, 8S, S8,
o, *, and 8, and the correlation between the latent probit dependent variable and the observed continuous trips variable
(given that trips are positive). This correlation parameter is p. However, it is very difficult to push this algorithm to conver-
gence for specifications as complex as those employed here. We tried this for one of our waters, using the converted two-
stage point estimates as starting values, but could not achieve convergence in this optimization. This algorithm ran under
GQOPT on a UNIX system. The initial DFP portion of the optimization, with a convergence criterion of 10-6 ran for an
elapsed time of eight days without convergence, although these were "good" iterations.
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(9) E[q] = (G(G'Pg/exp(PDr + 5TDT))[(H'3h + PtA + Pr PoTAT)].

This form complicates the calculation of the choke price needed for the consumer's

surplus calculation, since water levels appear in G, H, and the A terms. Details of how

this was accomplished are described in Callaway et al.

Estimated Models

We obtain coefficients for (a) the two basic response/nonresponse probit models for each
of the four survey versions, (b) the heteroskedastic probit models for the participation
decision at each of the nine fedeally managed waters, and (c) the y continuous heteros-
kedastic models for each of these nine projects. Due to the sheer number of parameter
estimates involved in our nine models, we only briefly summarize the results in this
article.l4

Survey ResponselNonresponse Model

Two probit models were estimated for each of the four regional survey versions. One
model captures the effects of sample type and different sociodemographic, distance, and
census zip code data on the respondent's probability of responding with revealed pref-
erence information sufficient to allow their responses to be included in the estimating
sample. The second probit model uses identical variables to explain the probability of

responding with contingent preference information sufficient to allow these responses to
be included in the deestimating sample. Twoseparate probit models were estimated for
each region because noticeably more respondents provided revealed preference than con-
tingent preference data. The processes leading to actual (versus contingent) response
completion are are assumed to be independent.

The results of the first of these probit models are reported here (table 2) and are

revealing. 15 While the specifications are not the most parsimonious, multicollinearities

do exist between some of the explanatory variables, so we would not rely entirely upon

individually statistically significant t-ratios in the process of model selection. Maximizing

"fit" is relatively more important in this context. Variables that tend, in most cases, to

be significant determinants of survey response propensity include (a) the distance to the

different waters included on that survey version, (b) the survey sample strata group, and

(c) various zip code demographic variables. In cases where one might have strong priors

regarding the sign of a coefficient, most estimates confirm the expected influence of the

associated variable on the probability of an individual returning the survey questionnaire

and providing usable responses.

Demand Models: Heteroskedastic Probit First Stage

Our demand modeling uses a subsample limited to respondents who reported taking at

least some trip (actual or contingent) to one of the federal waters or any one of the "other

14 All coefficient estimates are available in Callaway et al.
15 Results of the second are reported in Callaway et al., but note that the IMRs from this second model do appear in the

demand models as the variable IMR-CONT.
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waters." Almost no respondent who did not take trips during the season under actual
conditions was induced to take trips under the contingent scenarios, so, for the general
water users we focus on the allocation of trips among the different waters in the regional
choice set. Any specific federal project will still have many water recreators with zero
trips to that particular water, but these respondents will have reported at least one actual
or contingent trip to some other water.

For purposes of illustration, table 3 reports these results for three of the waters, Hungry
Horse Reservoir, Lake Pend Oreille, and Lake Koocanusa. 16 For each water, there are
two columns of results. The first column is a probit model to predict whether the re-
spondent took any trips to that particular water. The second column is the tobit portion
of the model, to be discussed below. For the probit models, the own prices are negative
and significantly different from zero (this is true in most of the nine models), and the
own water-level variable was most often positive and significantly different from zero.
The cross-price and cross-water-level terms are mixed in sign and significance. The
apparent complementarity of some waters in terms of water levels could reflect a type
of complementarity not ordinarily considered by economists, who typically focus upon
the cross effects of prices.17

The nonprice and nonwater-level variables-income, the water-based activity dummy
variables (fishing license, boat ownership, or both), the exogenous seasonal visitation
rate control variable (NE TRIPS)-are most often of the expected sign, but their statistical
significance varies from water to water.

Demand Models: Heteroskedastic (Continuous) Second Stage

The set of candidate explanatory variables in the second-stage models are essentially the
same as for the first-stage models, except we include the At, Ar, and A, inverse Mill's
ratio terms from the first-stage heteroskedastic probit participation model. These results
are again quite mixed. While the price and own water-level variables often have coef-
ficients with the expected sign and these coefficients are significantly different from zero
in the first-stage models, they are seldom statistically significant in the second-stage
models. For these three waters, own price is negative and significant in the Pend Oreille
and Hungry Horse demand equations only. This seems to indicate that the major influence
of these variables may be in the participation decision itself; once an individual decides
that a particular water is usable for his or her purposes, he pays little attention to the
price and water level in determining the frequency of his monthly visits.

The cross-price and cross-water-level terms in the second-stage models are again
mixed in sign and significance. Intuition suggests that these waters should be substitutes,
and our models do indeed identify some substitutes. However, a negative cross-price
coefficient, or positive cross-water-level coefficient on an alternative water may again
indicate some complementarity. Such complementarity is unlikely unless it is an artifact
of multiple-site trip taking, but we do not distinguish between single- and multiple-

16 Space constraints preclude reporting both the probit and second-stage demand parameters for all nine waters, for models
which use some or all of the explanatory variables described in table 1.

17 This apparent relationship may be due simply to remaining collinearity between water levels. The actual historical water
levels are sometimes highly correlated across waters. Our augmentation with contingent scenarios unties these correlations
in some instances but not in all. To have used the contingent scenarios to completely orthogonalize the various water levels
would have been extremely helpful to the empirical analysis but was beyond the scope of the research project.
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destination trips in our models, so it is not possible to sort this out within the current
framework.

Policy: Expected Trips and Consumer's Surplus

As part of the overall project for the federal agencies, we have employed our calibrated
model to evaluate several hypothetical water-level scenarios, pegged to a set of system
operating strategies (SOSs) that might potentially be part of some plan to more effectively
flush the salmon smolts out to the ocean. Sample average expected trips and sample
average fitted consumer's surplus can be calculated for baseline, actual 1993 water levels
and then recalculated for any given change from these baseline levels to a set of alter-
native hypothetical water levels.

We illustrate two resource planning strategies below: a reservoir recreation (RR) and
fishery (F) strategy. The former would aim to protect and enhance recreation opportu-
nities by filling reservoirs by the end of June, maintaining the reservoirs at full pool
through the end of August. These conditions are considered to be more or less optimum
for reservoir recreators. The objective of the F strategy is to assist downstream fish
migration and enhance conditions for salmon spawning. The water levels and flow rates
embodied in this strategy are not considered to be optimal for reservoir recreationists.

Expected Trips and Changes in Expected Trips

For each of the nine waters, we estimate the individual's expected tris (May through
August) for specified patterns of water levels. The sample average of expected monthly
trips over all nine waters under conditions in 1993 (our baseline) is sometimes quite
small. For example, fitted trips for Lake Pend Oreille vary from 0.5 in May to 1.06 trips
in August. Across all waters, sample average expected trips under 1993 conditions are
lowest at John Day (0.09 in July) and highest at the Kootenai River (1.7 in July).

Comparing expected trips under the RR and F strategies, there is a tendency for av-
erage expected trips to be lower at all nine waters under the fishery strategy, as would
be expected. For example, simulations assuming water levels that are otherwise consis-
tent with the average levels over the past 50 years but controlled to enhance reservoir
recreation, produce average expected June trips to Hungry Horse of 0.81. Under man-
agement for the F strategy, average expected June trips fall to 0.44, or by about half.

The number of expected trips falls with the types of changes in water levels under the
F strategy, but in some cases, not by a large or statistically significant amount. As another
example, average expected trips to Dworshak Lake under the RR strategy are 1.37 for
July (again assuming otherwise 50-year-average water level conditions). For the F strat-
egy, average expected trips in that month are 1.19.

Expected Consumer's Surplus and Changes in Expected Surplus

Baseline sample, average expected consumer's surplus (CS) is calculated for actual water
levels in 1993. This measure can be interpreted roughly as the average expected monthly
willingness to pay (WTP) rather than do without these reservoir recreation opportunities,
given 1993 water levels. For all nine waters, the CS estimates have magnitudes that seem
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intuitively plausible, varying from about $13 (each summer month) for Lake Koocanusa
to $99 (August) for Lake Roosevelt. These monthly welfare amounts cannot easily be
compared with other extant welfare estimates for water recreation opportunities because
most other estimates are typically either annual or per-trip measures. (A crude range of
the value per outing for water-based recreation is from about $20 to $60, with some
estimates being higher for more exotic recreation such as fishing for salmon in Alaska.)
We could only attempt to convert our monthly CS estimates to annual measures by
assuming no intermonth substitution of trips-rather a strong assumption for some re-
creators. Alternatively, conversion of our monthly to per-trip measures is possible by
dividing the monthly WTP by the individual's estimated monthly trips, but this can create
confusion, as one's interpretation of such per-trip measures varies depending on whether
one uses baseline trips or trips predicted under one of the strategies. 18

Expected consumer's surplus (E[CS]) under the RR and F strategies are also simulated.
Assuming the 50-year-average levels otherwise obtain, the July average E[CS] for Hun-
gry Horse under the RR strategy is approximately $72. Under the F strategy, this falls
to $40, slightly more than half the monthly WTP under optimum recreation conditions.
For other waters at other times during the summer, this change is less dramatic. This is
due to different estimated demand functions for other waters, as well as different sim-
ulated water level conditions for the other waters under these two scenarios.

Summary and Conclusions

At the outset of this research project, it was not even qualitatively clear to what extent
water levels at reservoirs really matter to recreators in the Columbia River Basin. Based
on our analysis, we conclude that water levels at a particular water (the own water levels)
do strongly contribute to the probability that an individual will visit a federal water. This
influence diminishes in the model that explains the frequency of trips taken.

The use of the mixed actual and CB data for the recreation demand model in this
study spans the range of possible scenarios concerning the full set of water levels at
several different locations. It would not have been sufficient to model any single water
in isolation; substitution possibilities with respect to alternative site characteristics (not
just their prices) had to be accommodated. CB data are required to break the near-perfect
multicollinearities among water levels at some sets of waters in the actual historical data.
We combine several types of demand information from each survey respondent, using
demand data for each person at different levels of time aggregation in an innovative
way.

Our study has shown that it is important to control carefully for survey nonresponse
bias (separately for actual and contingent behavior responses, which exhibit different
nonresponse rates). Controlling for nonresponse propensities in the estimation of our
demand models helps to achieve demand parameter estimates that, in theory, more close-
ly reflect the preferences of the entire relevant population, as opposed to simply consid-
ering the preferences of those survey recipients who were interested enough to complete
the different sections of the survey instrument.

While not every valuation problem can involve such clear potential for differences in

18 See other issues about per-trip CS measures in Morey.
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values for respondents and nonrespondents, we suggest that this possibility be considered
carefully. If the potential is there, the investigators might consider using our approach
to control for such differences. Future research might attempt to devise schemes to ex-
amine more about the nonrespondents than can be obtained using other census variables
and other public data sources, as well as by using follow-up surveys. The latter may be
accomplished by implementing a second survey, designed with this initial nonresponse
target group in mind so as to ensure better response rates than the original survey ac-
complished.

[Received August 1995; final version received February 1996.]
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