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This paper develops an estimable model of recreation behavior in which the recreation
decision is cast as a dynamic programming problem. The model is illustrated with an
application to salmon and trout fishing on Lake Michigan. The application considers various
factors affecting the trip decision, including the expected catch, the weather, the opportunity
to participate in a fishing derby, and the time elapsed since the last fishing trip. Catch is
modeled as a Poisson-distributed random variable. Estimation results are promising, but a
number of practical obstacles must be surmounted for the model to be regularly applied in
recreation demand analysis. Q 1997 Academic Press

1. INTRODUCTION

Ž .The travel cost method TCM is now widely used to estimate the economic
benefit of nonmarket resources for site-specific recreational activities. Recent

Ž .applications of the method use nested logit NL estimation and are motivated by
appeals to the sequential nature of the recreation decision; for instance, an angler
first chooses a particular species to fish and then chooses a site from the subset of

w xsites known to have high populations of the species 6, 7, 14, 16, 17, 22 . Yet none
of the recent studies formally considers that outcomes on earlier trips affect the
decisions about when and where to take later trips. Also absent is the possibility
that recreation decisions are forward-looking; because anglers know early in the
fishing season that plenty of opportunities to fish lie ahead, they may postpone
trips that they would not postpone later in the season. In other words, the dynamic
nature of the decision process is absent from these models.2

Structural estimation of the dynamic decision process of anglers would allow the
analyst to attain an empirical esthetic not found in the usual static models; the
analyst may be able to formulate a decision problem that most observers would
agree looks more like ‘‘the real thing’’ than what is currently found in the
literature. This pursuit of ‘‘the real thing’’ would provide the opportunity not only

1 This work was funded by the University of Wisconsin Sea Grant Institute under grants from the
National Sera Grant College Program, National Oceanic and Atmospheric Administration, U.S.
Department of Commerce, and from the State of Wisconsin. Federal Grant Project RrPS-49. Addi-
tional funding was obtained from the University of Wisconsin Graduate School, and from the United

Ž .States Department of Agriculture Hatch . We thank two anonymous reviewers for their comments.
2 An exception to the use of static models in recreation demand analysis is the habit formation model

w xexamined in Adamowicz 1 , in which utility is cast as a function of stock variables, the evolution of
which depends on depreciation parameters.
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to derive estimates of economic values as in the usual static models, but also to
approximate the structural parameters important to understanding the dynamic
relationships between fish stocks and angler effort. In their study of the Green Bay,

w xLake Michigan yellow perch fishery, Johnson et al. 10 observe that ‘‘The prospect
exists for managing variability in harvest and stock size and for maximizing
economic returns in the fishery, but more information is required, primarily on
sportfishing dynamics and angler preferences. Stock-recruitment relations, density
dependence of growth, and dynamics of sportfishing effort are the primary sources of

Ž .uncertainty limiting the precision of our predictions’’ Abstract, emphasis added .
w xSwallow 21 demonstrates the importance of intraseasonal management of a

fishery to maximize angler welfare. Like Johnson et al., he concludes that addi-
tional research is required to understand angler behavior: ‘‘Evaluation of how
different types of recreationists might switch days between subseasons in response
to quality and regulations may prove critical. The extant literature does not address
the potential demand or equity implications for such intertemporal beha¨ioral choices.
Research on beha¨ioral choices could enrich policy assessments based on recreational

w xconsumer’s surplus’’ p. 933, emphasis added .
The fundamentally dynamic structure of the trip decision is certainly understood

w xby TCM practitioners; for instance, Morey et al. 16 observe that, ‘‘In general, one
might expect that the decision to fish at site j mode m in period t would affect the
participation probability and sitermode probabilities in subsequent periods.’’ Yet
such relationships have not yet been modelled, most likely for two reasons. First,
estimation of dynamic models would require fairly detailed data. And second,
developing a conceptually coherent dynamic model of behavior that is also tractable
in estimation is a daunting task. Arguably the first reason is simply an effect of the
second; if dynamic structural models were easily estimated, data to estimate them
would be gathered.

In this paper we describe a dynamic structural model of the decision to visit a
recreation site. The estimation approach as described in the first part of the paper

w xis the same as that first used by Rust 19 in his study of the dynamics of the bus
w xengine replacement decision, and Miranda and Schnitkey 15 in their investigation

of the dairy cow replacement problem. The model is best described as a dynamic
multinomial logit model. By virtue of its dynamic nature, the model avoids the
problem of the independence of irrelevant alternatives that afflicts static multino-
mial logit models. On the other hand, because the model has a multinomial logit
form, the calculation of likelihoods can be done relatively cheaply. Welfare effects
of changes in site quality are easily calculated via dynamic programming.

The second part of the paper illustrates the model with an empirical investiga-
tion of the decisions of fishing club members on the Wisconsin shore of Lake
Michigan. As it turned out, most club members rarely ventured from a few
launches close to home, and so for these anglers the fishing decision on any given
day is reasonably cast as the simple binary choice of whether or not to fish for

Ž .salmonids salmon and trout from local ramps on Lake Michigan. The application
accounts for various factors influencing the decision to fish, such as the expected
catch, the weather, the time-cost of fishing, and the time elapsed since the last trip.

Ž .Estimation results are used to calculate the conditional probability of fishing on
any given day of the season, the expected seasonal value of fishing, and the welfare
effect of an increase in the quality of fishing, as measured by an increase in the
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site-wide average catch. The paper concludes with remarks on some of the
methodological issues raised by the application.

2. THE BASIC MODEL

Over the past 10 years a literature concerning the estimation of stochastic
dynamic behavioral models has emerged and no doubt will continue to grow in the

w xyears ahead. Reviews of this literature are contained in Rust 19 , Eckstein and
w x w xWolpin 8 , and Rust and Pakes 20 . Because the estimation technique is new in

the nonmarket valuation literature, in the discussion here we present it in consider-
able detail. As with all previous attempts to estimate stochastic decision problems,
we assume preferences are time-separable and state-separable. Time separability
implies that total utility for the season can be expressed as the expected discounted
sum of the utility generated on each day of the season. State separability implies
that preferences in the current period depend only on the current state of nature,
though this is not as restrictive as it might seem at first glance}it is a trivial
matter in practice to include in the ‘‘current’’ state of nature past state values, or

w xpast outcomes. Rust and Pakes 20 argue that the assumptions of time and state
separability still leave the analyst with enough flexibility to develop a good model
of behavior. They conclude that, ‘‘While it is unlikely that human decision makers

Žare literally solving time separable Markovian decision problems either con-
.sciously or unconsciously , it turns out that this class is sufficiently rich and flexible

Ž .to enable one to construct detailed models of most types of behavior’’ p. 7 .
We present the model in the context of recreational fishing, though it is certainly

applicable to other recreational activities with a clear dynamic component. Let T
denote the total number of days in the fishing season, and let t s 1, . . . T denote
an arbitrary day during the season. On day t an angler decides among various
fishing alternatives, including not fishing at all. Ultimately the angler’s decision
depends on the state of nature at time t, as defined by state variables concerning
the quality of fishing, the time elapsed since the last day fished, the weather, and so
on. If the analyst knows all the variables that enter the angler’s decision process,
then in theory he or she can solve the appropriate dynamic decision problem to
obtain an optimal ‘‘trip policy’’ that perfectly forecasts the fishing alternative
chosen by the angler. Of course, knowing enough about the decision process to
perfectly forecast trips is impossible, and so the analyst must concede the existence
of random state variables entering the decision process that are observed contem-
poraneously by the angler but never observed by the analyst.

Suppose there are I trip destinations, and let y denote the angler’s trip decisiont
on day t, with y s i if on day t alternative i is chosen, i s 0 . . . I. y s 0 denotest t
the decision not to fish on day t. The vector of observable state variables affecting
utility on day t is denoted by x ; by obser̈ able we mean that both the angler andt
the analyst observe the value of the state variable. Included in this vector are such
determinants of the trip decision as weather variables, trip costs, and catch rates at
the various fishing sites. Along with the observable state variables the model

Ž .includes decision-specific unobservable state variables « s « , . . . « . These are˜ ˜ ˜t 0 t I t
random variables observed contemporaneously by the angler but not by the
analyst.
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For the purpose of understanding the angler’s decision problem it is necessary to
distinguish among various subvectors of x . Let x denote the subvector of statet at
variables with values observed by the angler at the time the fishing decision is

Ž .made where the subscript a denotes ‘‘anterior’’ , and let x denote the subvectorpt
Žof state variables observed by the angler after the fishing decision is made where

.the subscript p denotes ‘‘posterior’’ . In a model of recreational fishing the
distinction between anterior and posterior state variables bears on the role of catch
expectations in the trip decision; when anglers make trip decisions they know the
probability distribution for catch at each site, but not the actual catch, which is
revealed only after the trip is taken. Those anterior state variables that evolve over
time independently of the fishing decision are denoted by x . Those anterior stater t
variables influencing the utility associated with alternative i are denoted by x .ait
Finally, those posterior variables influencing the utility associated with alternative i
are denoted by x .pit

Each day the angler solves a complex dynamic decision problem involving,
among other things, the consumption of income and the fishing decision. Here we
assume that the allocation of income for day t is independent of the decision to
fish; this allows the separation of the income allocation and fishing decisions.

Ž Ž . .Specifically, the consumption of income on day t is denoted by b B x , x ,t t r t r t
where B is the angler’s budget for the fishing season on day t. The budget evolvest
according to

B x if t s 1Ž .r tB s , 1Ž .t ½ B y b q v x if t s 2, . . . TŽ .ty1 ty1 t r t

Ž . Ž .where B ? is the initial budget for the season, and v x is income added to thet r t
seasonal budget on day t. So, for instance, the model allows the possibility that the
angler consumes more income on a warm, sunny weekend in July than on a cold
rainy weekday in May, but it does not allow the possibility that more income is
allocated to day t when the angler chooses fishing alternative i.

Ž . 3Let c denote the cost price of alternative i on day t. The cost of making noi
trip is zero, and so c s 0. The utility associated with decision y s i is generally0 t
denoted by

u x , x , b B x , x y c q « ,Ž .Ž .˜ ˜Ž .i ai t p i t t t r t r t i i t

Ž .where the last argument in u ? denotes consumption of the numeraire on day t.˜i
In static random utility models of the recreation decision, utility is often

represented as linear in the budget. This implies zero income effects, and so when
the disturbance term « has a certain structure, closed-form solutions for compen-ĩ t
sating and equivalent variation are possible. In this regard the linear specification
is therefore convenient but not necessary. Note, however, that this conclusion

Ž .presumes the budget income is observed. In our dynamic model the budget of
interest is the daily budget, which is at best extraordinarily difficult to observe. As

3 Ž . Ž .An alternative expression of trip cost is c ? s mcost q tcost x ; d , where mcost is the moneyi i ai t i
Ž .cost of alternative i, tcost ? is the time cost of alternative i, measured in units of money, and d is a set

Žof estimable parameters. In this case the time cost of a trip is estimated for a related discussion, see
w x.McConnell and Strand 12 . This is the approach used in the empirical investigation. In the discussion

here it is for simplicity that trip costs are denoted by the constant c .i
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it turns out, a linear or quasi-linear specification allows this empirical problem to
be circumvented. In light of the small differences in the daily budget over time, a
linear specification may provide a reasonably good first-order approximation of the
‘‘true’’ model of indirect utility.

Suppose that utility takes the linear form

u s g x q g x q l b y c q « , 2Ž . Ž .˜ ˜ ˜ ˜i p i p i t ai ai t t i i t

where g and g are conformable vectors of parameters and l is the marginal˜ ˜ai p i
Ž .utility of income. Dividing 2 by the marginal utility of income yields the money

metric expression of utility u ,i

g x g x «˜ ˜ ˜pi p i t ai ai t i t
u s q q b y c qi t il l l

s g x q g x q b y c q « . 3Ž .pi p i t ai ai t t i i t

On day t the angler’s dynamic decision problem is to maximize the sum of
expected current and future utility, where future utility is discounted by an
‘‘impatience’’ factor b. Formally, the angler’s problem is

T
Isytmax E b g x q g x q b y c q « . 4� 4 Ž .Ý p i p i s ai ai s s i i s is0

sst

Ž .The expectation in 4 is taken over the three categories of random state variables,
x , x , and « . At the time of the fishing decision on day t, the value of thep s as s
posterior state vector x is unknown and conditional on the state vector x andpt at

Ž .the decision y . We denote by u the parameters associated with the conditionalt p
probability distribution of x . Similarly, the anterior state vector on day t q 1 ispt
unknown on day t and conditional on x and y . We denote by u the set ofat t a

Ž .parameters associated with the conditional probability distribution of x .a, tq1
Finally, the elements of « are independently and identically distributed over timet
according to a known multivariate probability distribution. We denote by m the
parameters of this distribution. It bears repeating that at the time the fishing
decision is made, « is known by the angler, but is never observed by the analyst.t

Ž . Ž .Now define G s u , u , b , m, g and c s c , . . . c , and let na p 0 1 tq1
Ž . Ž .x , « , c; G denote the value of 4 on day t q 1. Note that this functiona, tq1 tq1
takes as arguments the state variables observed by the angler at the time the trip
decision on day t q 1 is made. Also, let E denote the expectation overx < x , ip i ai t

Ž .current day t ’s realizations of the state vector x , conditional on the currentpi
state vector x and the current decision y s i; and let E denote theait t x , « < x , ia at

expectation over tomorrow’s realizations of the state vector x and the randoma
variable « , conditional on x and the current decision i. Then by Bellman’sat
principle of optimality, the angler’s problem can be restated,

� 4n x , « , c; G s max g E x q g x y c q «Ž .t at t p i x < x , i p i t ai ai t i i tp i ai ti

qbE n x , « , c; G . 5� 4Ž . Ž .x , « < x , i tq1 a , tq1 tq1a at
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The daily budget b is eliminated from the decision problem because it is the samet
for all alternatives.

For expositional reasons define

V x , i , c; G s E n x , « , c; G , 6� 4Ž . Ž . Ž .tq1 at x , « < x , i tq1 a , tq1 tq1a at

and

� 4U x , i ; g , u s g E x q g x . 7Ž .Ž .i ai t p i p i x < x , i p i t ai ai tp i ai t

Ž .Equation 5 now can be restated as

n x , « , c; G s max U x , i; g , u y c q « q b V x , i , c; G . 8Ž . Ž . Ž .� 4Ž .t at t i ai t p i i i t tq1 at
i

With the parameter vector G known, and the vector « observed, the decisiont
Ž . Ž w x.problem 8 can be solved via backward recursion see Bellman 3 . In general this

Ž .is not a trivial problem. For instance, deriving V ? involves I-dimensionaltq1
integration over the state vector « at each stage of the recursion. The problemtq1
is greatly simplified, however, by assuming that the variables « are mutuallyi t
independent Gumbel-distributed random variables with location parameters

Ž .m . . . m and scale parameter s ; in our notation, m s m , . . . m , s . From the0 I 0 I
Žstandard properties of Gumbel-distributed random variables see Ben-Akiva and

w x. Ž .Lerman 4 , integrating both sides of 8 with respect to « at day t q 1 yields

E n x , « , c; GŽ .« tq1 a , tq1 tq1

I1
s ln exp s U x , j; g , u y c q m q b V x , j, c; G .Ž .Ž .Ý j a j , tq1 j p j j j tq2 a , tq1½ 5s js0

9Ž .

Ž . Ž .Substituting 9 into 6 ,

L1
V x , i , c; G s E ln exp s U x , j; g , u y c q mŽ . Ž .Ýtq1 at x < x , i j a j , tq1 j p j j ja at ½s js0

qb V x , j, c; G , 10Ž . Ž .tq2 a , tq1 5
Ž .and so with V ? known from the previous stage in the recursion, calculation oftq2

Ž .V ? is a relatively simple affair involving integration over the random elementstq1
in the observable state vector.

Ž . Ž .Solution of the DP problem 8 ] 10 is the defining characteristic of the
estimation problem. With V known, maximum likelihood estimation of the dy-t
namic problem is similar to that of its static counterpart. In particular, in the static

Ž .case b s 0 the probability of observing decision i given the observable state
Žvector x and the parameter vector G has the form see Ben-Akiva and Lermanat

w x.4 :

exp s U x , i; g , u y c q mŽ .i ai t i p i i i
<Pr i x , c; G s , 11Ž .Ž .at I

exp s U x , j; g , u y c q mŽ .Ý j a jt j p j j j
js0
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whereas in the dynamic case the probability of observing decision i is

exp s U x , i; g , u y c q m q b V x , i , c; GŽ .Ž .i ai t i p i i i tq1 at
<Pr i x , c; G s .Ž .at I

exp s U x , j; g , u y c q m q b V x , j, c; GŽ .Ž .Ý j a jt j p j j j tq1 at
js0

Now suppose that the trip behavior of N anglers is observed for all T days of the
fishing season. Letting y denote the decision of angler n on day t, the likelihoodnt
of the sample is4

<L G s Pr y x , c; G . 13Ž . Ž .Ž .ŁŁ nt a , nt
N T

Maximum likelihood estimation of the dynamic structural model thus involves a
Ž .nested inner algorithm in which a dynamic programming DP algorithm derives

Ž .V ? , t s 1, . . . T , for the specified vector G, and an outer hill-climbing algorithmt
Ž .that searches for the value of G yielding the highest value of L G . This nested

structure places a premium on parsimony, both in the state vector x and in thet
parameter vector G; each time a new value of G is examined in the maximization
routine, a DP problem must be solved.

2 a. The Issue of the Independence of Irrele¨ant Alternatï es

A well-known weakness of static multinomial logit models is the property of
Ž .independence of irrele¨ant alternatï es IIA : the odds of choosing one alternative

over another depends only on the attributes of the two alternatives. So, for
w xinstance, in the example offered by Bockstael 5 , the IIA property implies the

unlikely result that the odds of visiting a saltwater beach instead of a freshwater
lake does not depend on whether a third beach is itself a saltwater or freshwater
site. The IIA property does not extend to our dynamic model. The log odds ratio
can be stated

<Pr y s i xŽ .t at
log s U x , i; g , u y c q b V x , i , c; GŽ .Ž .i ai t i p i i tq1 at½ 5<Pr y s j xŽ .t at

y U x , j; g , u y c q b V x , j, c; G 14Ž . Ž .Ž .j a jt j p j j tq1 at

Ž .and so by virtue of the presence of x and c in V ? , the odds of choosing to fishat tq1
Ž .at site i instead of site j depends on the attributes state of nature at all possible

sites.

2b. Welfare Analysis Using the Model

On the last day of the season, day T , the angler’s dynamic decision problem
reduces to a static one. Consider now the welfare effect of a change in c and x aT
on the last day of the season. Let c 0 denote the set of original prices of the various
decision alternatives, and let c1 denote an alternative set. Similarly, let x 0 and x1

aT aT
Ž . Ž .denote the original and alternative vectors of anterior state variables. From 3 ] 5

it is apparent that n q b is a money measure of conditional indirect utility onT T
Ž .the last day of the season, and so assuming nonsatiation b s B , compensatingT T

4 Ž .The subscript indexing the angler n is generally suppressed to reduce notational clutter. It is used
only when necessary to clarify the presentation.
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Ž . Ž .variation CV and equivalent variation EV are defined byT T

CV s EV s n x1 , « , c1 ; G y n x 0 , « , c 0 ; G q B1 y B0 ;Ž . Ž .T T T aT T T aT T T T

and with B unchanged,T

CV s EV s n x1 , « , c1 ; G y n x 0 , « , c0 ; G .Ž . Ž .T T T aT T T aT T

Backward induction reveals that n q B is a money measure of welfare for thet t
remainder of the season on day t. Yet clearly welfare analysis is notably richer
than on the last day of the season, because now such analysis involves a temporal
aspect; the issue is not only whether a change takes place, but how the change is
carried forward through time. Suppose, for instance, that exogenous processes
governing site quality are altered. In our model, this is represented by a change in

Ž . 0 1G specifically, by a change in u and u . Let G and G denote the values of Ga p
under the original and alternative settings. Then for B0 s B1, in this more generalt t
setting compensating and equivalent variation are defined by

CV s EV s n x1 , « , c1 ; G1 y n x 0 , « , c 0 ; G0 .Ž . Ž .t t t at t t at t

Here both compensating and equivalent variation equal the one-time payment
required on day t to make the angler indifferent to the proposed change in prices,
exogenous processes, and the initial state. This value is readily obtained by solving
two DP problems. In principle the estimated model is amenable to a rich variety of
welfare analyses of intraseasonal management programs, such as those which shift
the fish catch from one part of the season to another.

The definitions of compensating and equivalent variation offered above are
Ž .conditional on the state of nature x , « . Insofar as « is not observable by theat t t

analyst, we can define an alternative notion of compensating and equivalent
variation as the expected value of CV , where the expectation is taken over « :t t

1 1 1 0 0 0CV s EV s E n x , « , c ; G y E n x , « , c ; G .Ž . Ž .t t « t at t « t at t

For policy analysis there remains the issue of presenting welfare measures as
conditional on the observable state variables x . Two points about this areat
relevant. First, for policy analysis interest most likely lies in seasonal welfare
measures, and with b s 1 such welfare measures are unlikely to be much affected
by the initial state x . This proposition can be examined via sensitivity analysis.a0
Second, in the event x does have a substantial impact on the value of CV ,a0 0

Ž .historical data may be used to estimate the unconditional distribution of x , anda0
a measure of compensating and equivalent variation for the season is then

1 1 0 0CV s EV s E n x , « , c ; G y E n x , « , c ; G .Ž . Ž .0 0 « , x 0 a0 0 « , x 0 a0 0a a

3. AN APPLICATION OF THE MODEL

To illustrate the model we enlisted the support of two fishing clubs on the
southwest shore of Lake Michigan. Members of the Lakeridge Boat Club fish
primarily from launch sites along Lake Michigan from South Milwaukee to Racine,
Wisconsin. Members of Salmon Unlimited-Kenosha fish from launches around
Kenosha, Wisconsin. Each club supplied us with a list of club members. In late
April and early May 1995 a letter was sent to club members describing our interest
in recording their fishing activity throughout the 1995 season. This was followed by
telephone contacts to confirm participation in the study. The survey of fishing
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activity was administered via telephone calls at 2-week intervals from mid-May to
mid-October. Because only a handful of trips were taken before May 1 and after
September 10, these dates were designated the beginning and end of the fishing
season. Survey questions concerned dates, launch sites, and catch on the fishing
trips taken during the interval between calls. A separate mail survey administered
late in the season concerned angler characteristics such as age, employment status,
boat size, and income.

Constructing the sample from club anglers served the primary purpose of
developing a relatively simple model to illustrate the methodological issues in
estimation. A total of 45 club members were included in the analysis. All anglers
fished exclusively from boats towed to the launch site. Almost all of the fishing

Ž .trips taken by these anglers were salmonid salmon and trout trips on Lake
Ž .Michigan. Of the 813 fishing trips taken by these anglers, only 45 5.5% were not

salmonid trips on Lake Michigan. Moreover, anglers rarely ventured from a few
favorite launch sites close to one another on the southwest shore of Lake

Ž .Michigan. For only 28 of the 768 Lake Michigan salmonid trips 3.6% was the
driving distance to the launch site more than 10 miles greater than the distance to
the angler’s primary site. Taken together, these data suggest that the fishing
decision for these anglers is reasonably modeled as the simple binary decision of
whether to take a salmonid trip on Lake Michigan. In the context of our model, we
let y denote an angler’s trip decision on day t, with y s 1 if a Lake Michigant t

Ž .salmonid trip is made, and y s 0 otherwise. Then setting U ? equal to the zerot 0
function, the expected net gain from fishing on any given day is denoted by
Ž . Ž . Ž .U ? y c ? , and so the value function n ? measures the expected net gain from1 1 t

salmonid fishing for the remainder of the season.

3a. Variables Used in Estimation

Preliminary analyses with a logit model, and with various restricted structural
models in which the number of estimable parameters varied between 5 and 9, were
used to identify variables to include in the model.5 This was done to limit to the
extent deemed reasonable the size of the problem, in particular the size of the
nested DP algorithm. The importance of such an exercise cannot be overstated.
The model presented here required a little over 5 days to estimate on a Gateway
Pentium-166 personal computer. Had the final model included all variables ex-
pected at the outset to have an impact on the fishing decision, but judged in

Ž .pre-testing to have no significant effect angler income is a prominent example ,
the solution time would have increased at least 10-fold, and thus the problem
would have required solution on a supercomputer.

In the model, trip cost is represented as the sum of the money cost per trip,
mcost, and the expected time cost of a trip, measured in dollars, tcost . Thet
observed money cost varies across anglers but not over time and is calculated as
the sum of the cost of driving to the launch site and operating the boat, minus the

5 In the logit analysis, a dependent variable taking a value of 1 if a trip was taken, and 0 otherwise,
was regressed on a set of explanatory variables including temperature, wind speed, angler income,
money costs, site-wide average catch, the angler’s previous catch, the time elapsed since the last trip,
and the trip distance. The sample size for the analysis was the product of the length of the season in
days and the number of anglers in the sample, 133 ? 45 s 5985.
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contribution toward expenses made by other trip participants.6 The expected time
cost of a trip is represented by

tcost s d q d job q d job ? day q d job ? day ? regday, 15Ž .t 1 2 3 t 4 t

where job is a binary variable taking the value of one if the angler is employed full
time during the season and zero otherwise; day is a binary variable taking thet

Ž .value of one if the day is a weekday Monday to Friday and zero otherwise; and
regday is a third binary variable taking the value of one if the angler works a

Ž .regular 40-hour work week Monday to Friday and zero otherwise. The expected
time cost of a trip is thus a relatï e measure. The baseline cost is that of a retired
person. For a retired person, job s 0, so tcost s d . For an angler who regularlyt 1
works Monday to Friday, the expected time cost on a Saturday or Sunday is greater
than that of a retiree by d . Otherwise it is greater than that of a retiree by2
d q d q d .72 3 4

Ideally the trip cost would include a term for the time cost of the distance
traveled to the launch site, d ? distance, where d is an estimable parameter5 5
denoting the unit time cost of travel, as well as interaction terms like d ? distance ?6
job, to distinguish the time cost of travel under different circumstances. Here such
terms are not included because the benefit of doing so probably would be small
and the cost of doing so certainly would be great. In the preliminary analyses used
to identify variables to include in the model, distance was not a significant
predictor of trip-taking behavior when mcost was included as an explanatory
variable. So on the benefit side, terms involving distance probably would not prove
statistically significant in modeling the dynamic trip-taking decision of anglers. On
the cost side, including the distance traveled as an explicit state variable would
involve the addition of yet another continuous state variable to the model, thereby
increasing the computation time by at least an order of magnitude. It is well-estab-
lished in the travel cost literature that welfare estimates are biased downward
when the time cost of travel is not included in estimation. For the present
application this bias is probably small. Most anglers in the sample live within 15
miles of the launch site, and so travel times are generally trivial in comparison to
the total time spent on the water.

Two weather variables are included in the model. wind is the average windt
speed on day t, measured in miles per hour, and temp is the maximum tempera-t
ture, measured in degrees Fahrenheit. These weather data were obtained from

6 The driving distance was calculated as the trip-weighted average distance to the angler’s primary
and secondary launch sites. Distances to primary and secondary launch sites are generally within 10
miles of one another. The driving cost was calculated as this distance multiplied by the operating cost
per mile for the vehicle type most often used by the angler, as reported in 1995 by the American

Ž .Automobile Association AAA . This cost considers fuel and oil costs, and wear-and-tear on tires. The
cost of boat operation was estimated via a regression equation in which the angler’s estimate of the fuel
and oil cost of operating a boat was treated as a quadratic function of boat length. Surprisingly,

Ž .estimation of a model in which the day of the season t s 1, . . . 133 was included as an independent
variable found that operating costs remain constant through the season. Anglers reported for each trip
the contribution toward trip expenses made by other trip participants. An angler-specific average
contribution was calculated from these reports.

7 Ž .The time spent on a trip including the time spent on the water is a choice variable, so that the
time cost of a trip is itself a matter of choice. Yet at the time the trip decision is made the angler makes
the decision based on the expected length of the trip and by extension the expected time cost of the trip.

w x w xSee McConnell 11 and McConnell and Strand 12 for related discussions.
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climatology data for Mitchell Field in Milwaukee, posted electronically by the
National Weather Service.8

The variable catch is the trip catch on day t of salmonids meeting size limits, ast
Ž .reported in the telephone interviews. Total boat catch on the trip is considered

instead of the angler’s individual catch, because salmonid fishing by boat on Lake
Michigan usually involves trolling with at least several lines per angler, and landing
a fish is a team effort. This variable is a posterior state variable, unobserved at the
time the trip decision is made, so its role in estimation is strictly conceptual, as
described in the next section. The variable excatch is an anterior state variablet
denoting the trip catch on the previous outing. Its relationship to the variable
catch is obvious; for instance, if the angler fishes on day t, excatch s catch .t tq1 t
The variable catch2 is the site-wide average catch of salmonids per boat on day t.t
It is an anterior state variable constructed from the 1995 creel census conducted by
the Wisconsin Department of Natural Resources at launch sites in Milwaukee and
Racine counties.9 The census included a total of 458 salmonid trips, with an
average of 24.1 trips per week. Trips were grouped into weeks to derive weekly
averages of catch per trip. Quadratic splines were then fit to these data, yielding
the average catch estimates shown in Fig. 1. For the most part the figure matches
the informal feedback we received from anglers. In late June the fishing was
relatively poor. It was best from mid-July to early August, and then fell off sharply.
The fishing was probably worse in early May and September than indicated in Fig.
1. For these intervals very few salmonid trips are in the creel census, and so at the
chronological ‘‘tails’’ our estimates of site-wide catch per trip may be high.

Three other observable state variables are included in the model. The variable
elapsed equals the number of days elapsed since the last fishing trip, up to 20 days;t
when the days elapsed exceeds 20, the value of elapsed remains at 20 until a trip ist
taken. The upper bound is arbitrary and is imposed to constrain the size of the DP
algorithm. This variable is included to provide a dynamic analog to the static
concept of diminishing marginal utility. We hypothesize that the utility from a trip
increases as the time elapsed since the last trip increases. The variable age is a
dummy variable taking a value of one if the angler is older than age 75 and zero
otherwise. Older anglers in the sample indicated they are somewhat restricted in
the decision to fish due to health and safety concerns. The final observable variable
concerns participation in Salmon-A-Rama, a popular fishing derby that in 1995
lasted from Saturday July 15 to Sunday July 23. The total value of prizes in the
contest is approximately $100,000, far more than any other fishing tournament in
the Great Lakes, and the entry fee is a total of $20 per person for the full 9 days of
the tournament. In principle, during Salmon-A-Rama an angler faces three alter-
natives in the fishing decision: to stay home, to participate in the derby, or to fish
without participating in the derby. To simplify matters, we assumed that anglers
who reported that they fished in the derby always preferred entering the derby
when they fished, and that anglers who did not fish in the derby ne¨er preferred
entering the derby when they fished. The effect of Salmon-A-Rama on the fishing

Ž .decision is then adequately represented by including in U ? the dummy variable1

8 As of June 1996, climate data are available at ftp:rrftp.ncdu.noaa.govrpubrdatarfsodr
fsod ascii.14839.

9 A separate approximation for the Kenosha ramp was not possible because of the small number of
trips in the Kenosha census. In the model we assume average catch for Kenosha is the same as that for
Milwaukee]Racine.
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FIG. 1. Average salmonid catch at Milwaukee]Racine ramps, 1995.

derby , taking the value 1 for the dates July 15 to July 23 if the angler reportedt
participating in Salmon-A-Rama, and 0 otherwise.10

The unobservable variable « is assumed to be an identically and independentlyt
Gumbel-distributed random variable with location parameter m s 0 and scale
parameter s . It captures variation in the financial contributions of other trip
participants, variation in the expected time cost of the trip, and so on.

3b. Statement of the Estimable Model

With the simple binary decision process considered here, the money measure of
Ž . Ž .the expected net gain from salmonid fishing on a given day is simply U ? y c ? ,1 1

where to remain consistent with the theoretical discussion in Section 2, the
subscripts on these functions index the decision to take a trip. Letting z denotet
the angler’s expected catch on day t, these functions take the form

U s g temp q g wind q g elapsed q g derby q g z q g age, 16Ž .1 1 t 2 t 3 t 4 t 5 t 6

and

c s mcost q tcost1 t

s mcost q d q d job q d job ? day q d job ? day ? regday. 17Ž .1 2 3 t 4 t

The dynamics of the model are as follows. On day t the angler knows the weather
Ž .maximum temperature and average wind speed for days t and t q 1. The angler

Ž .assumes that for all days following day t q 1 the weather is seasonal typical .

10 We did not anticipate the significance of Salmon-A-Rama in the fishing decision of anglers in the
sample, so we determined participation via the mail survey sent at the end of the season. Consequently,
we did not check for violations of the behavioral assumption underlying treatment of the derby in
estimation. That is, we did not check for cases where anglers both entered the derby and fished during
the period July 15]July 23 without entering the derby. Nonetheless, informal conversations with anglers
in the sample left us with the impression that the assumption used here is a reasonable simplification.
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Given the present quality of weather forecasting, assuming the angler knows the
weather for a 2-day horizon seems reasonable. Setting the weather for days
t q 2, t q 3, at their seasonal values implies that the future ¨ariability in the
weather has no impact on the angler’s current fishing decision, though the
‘‘typical’’ weather does. In the estimated model the seasonal weather for any day is
the average weather for the 2-week period centered on the day. For instance, the
seasonal wind speed for July 1 is the average wind speed over the 15 days centered
on July 1.

The state process governing the evolution of day is straightforward. Because thet
Ž .start of the season May 1 was a Monday, day evolves according tot

0 if t s 6, 7, 13, 14, 20, 21, . . .day s 18Ž .t ½ 1 otherwise

Ž .The time elapsed between fishing trips elapsed evolves in the obvious way. If at
trip is taken on day t, then elapsed s 1. If no trip is taken, then elapsed stq1 tq1
elapsed q 1, unless elapsed s 20, in which case elapsed s 20. Note that thet t tq1
upper limit on this variable implies that, all else equal, the expected utility for a
trip taken 20 days after the previous trip is the same as a that for a trip taken, say,
30 days after the previous trip.

The angler’s catch on a trip, catch , is a random variable unobserved by thet
angler at the start of the trip. The expected catch for a trip is a linear combination
of the catch on the previous trip and the sitewide catch on day t. Formally, the
angler’s expected catch on day t is

z s a excatch q a catch2 . 19Ž .t 1 t 2 t

Certainly other, more complex and perhaps more intuitive expressions of the
expected catch are possible, but indications from pre-testing are that models with
more complex expressions for expected catch do no better, and may do worse, than

Ž .a model using 19 . Because the value of excatch is not observed until after thet
first trip of 1995, estimation involves only those observations following the first trip
of the season. Importantly, the estimated model nonetheless applies to the entire
season}in particular, to the start of the season before the first trip is made}if

Ž .the expression of catch expectations in 19 applies throughout the season. In this
case, before the first trip is made excatch is the catch on the last trip of thet
previous season.

Because utility is linear in catch, the expected utility is linear in expected catch,
Ž .as presented in 16 . Higher moments of the catch distribution do not affect the

Ž .money measure of the net gain from fishing on the current day day t . Unfortu-
nately, matters are not so simple in the calculation of the expected gain from

Ž .future fishing, V x , i; c, G , a calculation which is part of the angler’s decisiontq1 at
Ž Ž . Ž ..process see expressions 5 and 6 . Recall that in general calculation of this value

involves integrating on day t over the random elements of x , given thea, tq1
anterior state vector x and the decision y . In the present application the onlyat t
problematic variable is excatch . Given the decision not to fish on day t,tq1

Ž .excatch is equal to excatch , and so calculation of V ? is a deterministictq1 t tq1
exercise.11 On the other hand, given the decision to fish on day t, excatch istq1

11 excatch is an anterior state variable that affects expected utility on day t via its influence ont
expected fish catch z .t
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Ž .equal to catch , and so because n ? is not known to be linear, calculation oft tq1
Ž .V ? necessarily involves integrating over the distribution of catch .tq1 t

In estimation catch is modeled as Poisson-distributed with mean z . A signifi-t t
cant theoretical advantage of using the Poisson distribution is that it applies to
random events taking positive integers, obviously the case for fish catch. A

Ž .significant empirical advantage is that the recursive equation in 10 }the equation
used to calculate the money measure of the expected future gain from fishing}can
be solved for the case where the angler chooses to fish on day t, without resorting
to numerical quadrature. Suppressing for the sake of clarity those anterior state
variables governed by deterministic processes, and noting again that for y s 1,t

Ž .excatch s catch , Eq. 10 can be stated,tq1 t

V z excatch , y s 1Ž .Ž .tq1 t t t

1
s ln exp s U z catch y cŽ .� Ž .Ý 1 tq1 t tž scatcht

catch tztyz tqb V z catch , y s 1 ? eŽ . 4Ž .tq2 tq1 t tq1 / ž /catch !t

z catch t
tyz tq b V z catch , y s 0 ? e . 20Ž . Ž .Ž .Ý tq2 tq1 t tq1 ž /catch !tcatcht

A few final notes about the mechanics of the estimation are worth reporting.
Elapsed and catch are integer variables and were treated as such in the estimationt t
algorithm. Mcost is a continuous real variable. In the dimension of this variable,t
Ž .V ? was approximated as a fifth-order Chebyshev polynomial. Upper bounds on allt

three of these variables were imposed to constrain the size of the dynamic
programming problem. The upper bound on elapsed is already discussed. Thet

Ž .upper bound on mcost is $50, which is greater than the maximum value $32t
calculated for the sample. The upper bound on catch is 25, which is greater thant
the maximum catch observed in the sample. To assure a good approximation to the
distribution of catch despite this upper bound}that is, to avoid significantt
truncation of the distribution}an upper bound of 15 was set for expected catch,
z .12

t

4. ESTIMATION RESULTS

The DFP algorithm in Goldfeld and Quandt’s GQOPT was used to obtain
maximum likelihood estimates of the parameter set G. Estimation results were
confirmed with NPSOL, a solver created at the Department of Operations Re-

w xsearch, Standford University 9 . A copy of the FORTRAN subroutine used to
calculate likelihood values is available from the authors.

12 The Poisson distribution has an upper limit of infinity and is completely defined by its mean zt
Ž .recall that for the Poisson distribution, the mean and variance are the same . For z s 15, the lowert
tail of the Poisson at catch s 25 is 0.9938. At the solution the constraint on expected catch was nott
binding for any observation. In fact, at the solution the expected catch for the vast majority of
observations was far less than 15, indicating that in estimation the approximation to the Poisson
distribution was excellent.
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Fourteen parameters were included in G: the scale parameter s , the two catch
expectation parameters a , the four cost parameters d , and the six parameters g of
the expected utility function. The impatience factor b was not estimated. In theory
this factor is equal to the discount factor for money. In a daily model, this implies
b f 1, and so to reduce the size of the estimation problem we set b s 1.

Results of the estimation are presented in Table 1. A 18 Fahrenheit increase in
the air temperature raises the net value of a fishing trip by $1.67. A 1 mile per hour
increase in the wind speed reduces the net value of a trip by $3.52. The coefficient
on elapsed is statistically significant, but its sign is opposite that expected. Itt
indicates that as the time elapsed increases the expected net gain from fishing falls
at the rate of $15.16 per day. Whether this is a legitimate expression of the
dynamics of preferences over time}the value an angler places on fishing falls as
the time spent away from fishing increases}or instead reflects a misspecification
bias arising because anglers who rarely fish are not adequately differentiated from
those who do, is a difficult question that we do not address here.

The coefficient on derby testifies to the significance of Salmon-A-Rama to thet
anglers in the sample. For participants, the derby raises the expected net value of a
trip by $162.63. The increase may be due to the competitive and social aspects of
the contest, as well as the opportunity to win substantial prizes.

The expected fish catch is nearly a convex combination of the catch on the last
trip and the site-wide catch on the current day, with a greater weight on the

Ž . Ž .angler’s catch on the last trip 0.730 than on the current site-wide catch 0.476 .
The large standard error on the latter estimate indicates it is imprecise. The
increase in the expected value of a trip from a marginal increase in the expected

Ž .fish catch is only $1.04 the value of the parameter g . This is lower than we5
anticipated and may be due to the linear form used to represent the utility of

Ž .anglers, combined with the high average catch rate five salmonids per trip for
anglers in the sample. The estimate may simply indicate that for highly successful
anglers, catching one more fish has a low payoff. Alternatively, together with the
large standard error on the expectation parameter a , the low value of g may2 5
indicate that catch expectations are not well specified for the sample. Anglers in

TABLE 1
Parameter Estimates of the Model

Parameter Associated variable Estimate Standard error

g Temp 1.67 .2431 t
g Wind y3.52 1.4582 t
g Elapsed y15.16 1.6213 t
g Derby 162.63 9.4994 t
g z 1.04 .6535 t
g Age y68.93 9.3596

Ž .d Constant 220.83 47.1851
d Job y70.66 7.5652
d Job ? day 154.29 8.2913 t
d Job ? day ? regday 2.73 3.1104 t
a Excatch 0.730 0.3631 t
a Catch2 0.476 0.9522 t

Ž .s Scale parameter 0.00988 0.0047
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the sample may form their catch expectations in a complicated way, often expecting
to catch fish despite low values for the current site-wide catch, and regardless of
their catch on the last trip. In this case the decision to fish on a given day would

Ž .not be particularly sensitive to the expected catch variable constructed in 19 ,
engendering a low value for g .5

As expected, the coefficient on the binary variable age is negative and indicates
that probably due to health and safety concerns, the expected net value of a fishing
trip is $68.93 lower for an angler over age 75 than for one who is not.

Keeping in mind that costs are subtracted to obtain the net value of fishing,
positive signs on the coefficients d indicate a reduction in the net value of fishing.i
The values of d , d , and d indicate the following about the time cost of fishing.2 3 4
First, as indicated by the value of d and its associated standard error, there is little4
difference in the time cost of fishing for anglers who work a regular week
Ž .Monday]Friday and working anglers whose schedule is not regular. Second, as
indicated by the sum of d and d , for an angler who works a regular week the3 4
opportunity cost of a fishing trip is $157.02 greater on a weekday than on a
weekend. And third, as indicated by the value of d , the cost of fishing on a2
weekend is actually $70.66 greater for a retired angler than for an angler who
works. On the other hand, on a weekday the time cost of fishing is $86.56 lower for

Ž .a retired angler than for an angler who works a regular week d q d q d .2 3 4
Possibly retired anglers choose to fish on weekdays to avoid the crowds and save
the weekends for other activities.

Figures 2]4 illustrate the sort of analysis possible with the model. Figures 2 and
3 map the probability of fishing against the money cost of a fishing trip and the day
of the season. In both figures, probabilities for each day are calculated for the case

Ž .where the previous catch was five excatch s 5, the season average catch ; the lastt
Ž .trip was 8 days before elapsed s 8 ; and the angler participates in Salmon-A-t

FIG. 2. Probability of fishing: employed, derby entrant.
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FIG. 3. Probability of fishing: retired, derby entrant.

Ž .Rama. Figure 2 applies to employed anglers with a regular Monday]Friday work
Ž .week. Figure 3 applies to retired anglers but with age s 0 . The distinctive

accordion-like structure of Fig. 2 arises because employed anglers are much more
likely to fish on a weekend than on a weekday. The otherwise corrugated appear-
ance of the figures}especially prominent in Fig. 3}arises because of changes in

Ž .FIG. 4. Expected net seasonal value of salmon fishing V . I, employed angler, derby entrant; =,r
retired angler, derby entrant; —, employed angler, no derby; } retired angler, no derby.
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the daily wind and temperature. The figures illustrate several results. First,
Salmon-A-Rama has a significant effect on the fishing decision. For employed
anglers this effect is most prominent on the two weekends of the derby. Second,
the money cost of fishing reduces the probability of fishing on any given day;
generally the probability of fishing falls by about one-third as the money cost of a

Ž .trip increases from $2 to $32 the maximum value in the sample . And third, quite
apart from the effects of Salmon-A-Rama, the probability of fishing is greatest

Žfrom the end of June to the beginning of August this is most apparent by
.comparing the height of the ‘‘peaks’’ in Fig. 2 , probably because catch rates were

high in this period and the weather was relatively pleasant.
Ž .Figure 4 presents the values V ? for particular states of nature. Values aret

presented for four categories of anglers, each distinguished by whether the angler
Ž .is employed or retired but with age s 0 , and whether the angler fished in

Salmon-A-Rama. Values are for the remainder of the season, as evident by the
Ž . Ž .definition of V ? in 10 , and are derived for the case where the money cost of at

Ž .trip is the sample median $7.50 , and the angler last fished 8 days before, catching
Ž .five salmonids the season average catch . Importantly, then, Fig. 4 does not display

the expected time paths of the value of salmonid fishing; instead it is correctly
understood to present conditional expected values for the remainder of the season.

Several insights are apparent from Fig. 4. Seasonal values appear plausible. The
value of the season is highest for a retired angler who participates in Salmon-A-

Ž . Ž .Rama $1340 and lowest for an employed angler who does not $480 . For
participants in Salmon-A-Rama the conditional expected value of salmonid fishing
is much higher just before the derby than just after it, suggesting that most of the
season’s value is contained in the 9 days of the derby. As expected, after the derby
the conditional expected value of the season is the same for derby participants as

Ž .for nonparticipants: for both types of anglers, on the day after the derby July 24
the future looks exactly the same. For employed anglers the conditional expected
value of salmonid fishing cycles on a weekly basis, rising during the work week and
peaking on Saturday. The explanation for this result is straightforward. Because
employed anglers are unlikely to fish during the work week, and the time elapsed
since the last trip has a negative effect on the net value of a trip, employed anglers
are worse off on a Monday than they are on the following Saturday in the same
circumstance. To elaborate in the context of Fig. 4, on any given Monday it is not
until the following Saturday}at which time 13 days will have passed since the last
fishing trip}that there is any reasonable chance that the angler will fish. So, all
else equal, the angler is worse off on a Monday having last fished 8 days before
than he is on the following Saturday having last fished 8 days before.

A good approximation of the unconditional value of salmonid fishing at the start
of the season is obtained by setting the time elapsed since the last trip at 20 days
Ž . Ž .the maximum , and setting the previous catch at 5 the season average catch . At
the median trip cost of $7.50, values are close to those shown in Fig. 4: $1340 and
$730 for retired derby entrants and nonentrants, and $980 and $480 for employed
derby entrants and nonentrants. For our particular sample of dedicated anglers
these values seem reasonable. An approximation of daily values for trips in and out
of the derby can be calculated as follows. The difference between the two seasonal
values for retired anglers is $610, which we take as an estimate of the value that
retired derby anglers place on fishing in the derby. These anglers took an average
of 5.3 derby trips, yielding a value per derby trip of $610r5.3 f $115rtrip. Note
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that this is an a¨erage value per derby trip, compared to the coefficient on derby ,t
$162.63, which gives the marginal effect of the derby on the expected value of a
trip.

Retired anglers took an average of 18.8 non-derby trips per season. Dividing the
seasonal value of retired non-contestants by this figure yields $39 as an approxima-
tion of the value placed by retired anglers on non-derby trips. Similar calculations
for employed anglers yield $88 for a derby trip and $37 for a non-derby trip. Note
that the value of a non-derby trip is virtually the same for retired and employed
anglers.

Finally, to examine the effect of an increase in site quality on the value of the
season, the average site-wide catch of salmonids on each day of the season was
raised by one fish. Keeping all other variables at the levels used in Fig. 4, the value
of the season rises by about $20 and $14 for retired and employed anglers who fish
in Salmon-A-Rama. It rises by $21 and $12 for retired and employed anglers who
do not fish in Salmon-A-Rama. These values are low and may reflect the low
marginal value of a fish for anglers who typically catch close to 100 salmonids per
year.

5. CONCLUSION

This paper presents an estimable dynamic model of recreation behavior that
avoids a number of consistency issues arising in static random utility models, while
permitting standard welfare analysis. In an illustrative application of the model to
the behavior of Lake Michigan salmonid anglers, results are mixed. The signs for
all estimated coefficients but one are as expected, and most are statistically
significant. Seasonal values for salmonid fishing are plausible. Moreover, the
application demonstrates the model’s potential to estimate economic variables not
readily calculated in static analyses, such as the relative time cost of fishing on a
weekend. Still, it is questionable whether the model well approximates the dynam-
ics of catch expectations in the decision to take a trip.

The application highlights a number of methodological issues, and we conclude
by commenting on some of these. First, in the valuation of nonmarket goods,

Ž .dynamic structural models require either observation of the daily or periodic
budget b , or assumptions concerning both the state equation governing the budgett
and the utility function that effectively eliminate the budget from the estimable

Ž .model. As it is extraordinary to obtain data with daily periodic budgets, future
empirical work will be limited to simple and often unsatisfying treatments of
budget state equations.

Second, dynamic structural models assume that the basic structure of the
relevant decision problem is the same for all agents. Of course, the same funda-
mental assumption of homogeneity underlies static models, but the extensive
nature of a structural dynamic model, especially the formal statement of state
equations, engenders the sense that the model overreaches. For instance, in the
model presented here expected catch is cast as a linear combination of two
variables, when it seems reasonable that catch expectations vary considerably
across anglers, and perhaps over time.

On the matter of the formation of catch expectations, three observations are
relevant. First, in static analyses there is no formal statement of catch expectations,
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and consequently in the calculation of seasonal welfare values such expectations
are implicit and fundamentally ad hoc. Second, when an agent’s judgment of the
nature of a stochastic process is not disciplined by the marketplace, there are no
apparent theoretical grounds for asserting one form for expectations over another.
So, for instance, whereas it is possible to construct an argument that the catch
expectations of commercial anglers are fairly homogenous and thus adequately
represented by a particular structure}essentially, those anglers who badly under-
perform their competitors in forecasting catch do not stay in business for
long}similar arguments appear somewhat problematic when applied to recre-
ational anglers.13 And third, the assumption of homogeneity can be relaxed by
estimating a separate structural problem for each angler or each subset of anglers.
This is simply a limiting case in which the number of estimable parameters grows
large. It requires a large number of observations for each angler and is not
computationally practical.

Finally, estimation of dynamic structural models requires surmounting several
notable obstacles. Obtaining the requisite data is generally quite expensive, as it
involves fairly detailed panel data. Developing the estimation algorithm requires
considerable effort by a programmer experienced in writing dynamic programming
algorithms. Moreover, because a dynamic program must be solved at each iteration
in the search for parameter estimates, it is critical to computational feasibility that
the model capture the essential features of the decision problem with relatively few
state variables. The best way to distill the set of potential state variables to the

Žessential few is by preliminary analyses using standard regression techniques e.g.,
.logit or multinomial logit regressions , though this comes at the cost of compromis-

ing the usual statistical tests. Even after such preliminary analysis, decision
problems larger than the simple binary choice problem presented here will proba-
bly require processor time on a supercomputer.

With these obstacles in mind, future work should focus on determining when it is
appropriate to use a static estimation framework}when, in other words, the

Ž Ž ..forward-looking element of the decision process the value function V ? is weaktq1
or nonexistent or is suitably approximated with a simple functional form. Static
estimation of this sort abandons the effort to develop insights to the dynamic
processes governing behavior, but it may yield welfare estimates close to those
obtained via its dynamic counterpart. This is an empirical question that awaits
investigation.
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