| Ingel B, Reyes C, Massonnet M, Boudreau B, Sun Y, Sun Q, EcElrone AK, Cantu, D, Roper, MC. 2021. Xyella fastidiosa casues transcriptional shifts that precede tylose formation and starch depletion in xylem. Molecular Plant Pathology. 22: 175-188. (Cover article). https://doi.org/10.1111/mpp.13016 Alkasrawi M, Rajangam AS, Tawalbeh M, Kafiah F, Al-Othman A, Al-Asheh S, Sun Q. 2020. Techno-economic anaylsis and a novel assessment technique of paper mill sludge conversion to bioethanol toward sustainable energy production. International Journal of Energy Research 44: 12602-12613. https://doi.org/10.1002/er.5667
Ingel B, Jeske D,
Sun Q, Grosskopf J, Roper C. 2019.
Xylella fastidiosa endoglucanases mediate the rate of Pierce’s disease development in Vitis vinifera in a cultivar-dependent manner.
Molecular Plant-Microbe Interactions 32: 1402-1414.
https://doi.org/10.1094/MPMI-04-19-0096-R
|
| Massonnet M, Balderas RF, Galarneau E, Miki S, Lawrence D,
Sun Q, Wallis CM, Baumgartner K, Cantu D. 2017.
Neofusicoccum parvum colonization of the grapevine woody stem triggers asynchronous host responses at the site of infection and in the leaves.
Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.01117
|
|
Sun Q, Sun YL, Juzenas K. 2017. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls.
Journal of Experimental Botany 68: 2231-2244. (Cover article).
https://doi.org/10.1093/jxb/erx103
|
|
Sun Q, Sun YL, Walker MA, Labavitch LM. 2013. Vascular occlusions in grapevines with Pierce’s disease make disease symptom development worse.
Plant Physiology 161: 1529-1541.
https://doi.org/10.1104/pp.112.208157
|
|
Sun Q, Greve LC, Labavitch LM. 2011. Polysaccharide compositions of intervessel pit membranes contribute to Pierce’s disease resistance of grapevines.
Plant Physiology 155: 1976-1987.
https://doi.org/10.1104/pp.110.168807
|
| Pérez-Donoso AG,
Sun Q, Roper C, Greve LC, Kirkpatrick BC, Labavitch LM. 2010. Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and
Xylella fastidiosa-infected grapevines.
Plant Physiology 152: 1748-1759.
https://doi.org/10.1104/pp.109.148791
|
|
Sun Q, Rost, TL, Matthews MA. 2008. Wound-induced vascular occlusions in grapevines (Vitis vinifera L.): tyloses in summer and gels in winter.
American Journal of Botany 95: 1498-1505. https://doi.org/10.3732/ajb.0800061
|
|
Sun Q, Rost TL, Reid MS, Matthews MA. 2007. Ethylene and not embolism is required for wound-induced tylose development in stems of grapevines (Vitis vinifera L.)
Plant Physiology 145: 1629-1636. (Featured article) https://doi.org/10.1104/pp.107.100537
|
|
Sun Q, Rost TL, Matthews MA. 2006. Pruning-induced tylose development in stems of current-year shoots of
Vitis vinifera (Vitaceae).
American Journal of Botany 93: 1567-1576. (Cover article)
https://doi.org/10.3732/ajb.93.11.1567 |
|
Sun Q, Yoda K, Suzuki H. 2005. Internal axial light conduction in the stems and roots of herbaceous plants.
Journal of Experimental Botany 56: 191-203. https://doi.org/10.1093/jxb/eri019
|
|
Sun Q, Kobayashi K, Suzuki M. 2004. Intercellular space system in xylem rays of pneumatophores in
Sonneratia alba (Sonneratiaceae) and its possible functional significance.
International Association of Wood Anatomists Journal 25: 141-154. https://doi.org/10.1163/22941932-90000356 |
|
Sun Q, Yoda K, Suzuki H. 2004. Spectral properties of light conducted in stems of woody plants show marked seasonal differences suggesting a close relationship with photomorphogenesis. International Association of Wood Anatomists Journal 25: 91-101. https://doi.org/10.1163/22941932-90000352 |
|
Sun Q, Yoda K, Suzuki M, Suzuki H. 2003. Vascular tissue in the stem and roots of woody plants can conduct light.
Journal of Experimental Botany 387: 1627-1635. https://doi.org/10.1093/jxb/erg167
|
|
Sun Q, Suzuki M. 2001. Quantitative character variations of cambial derivatives in mangroves and their functional significance.
Trees 15: 249-261. https://doi.org/10.1007/s004680100094
|
|
Sun Q, Suzuki M. 2000. Wood anatomy of mangrove plants in Iriomote Island of Japan: a comparison with mangrove plants from lower latitudes. Acta Phytotaxonomica et Geobotanica 51: 37-55. https://doi.org/10.18942/bunruichiri.KJ00001077448
|
|
Sun Q, Lin P. 1997. Wood structure of Aegiceras corniculatum and its ecological adaptations to salinities. Hydrobiologia 352: 61-66. https://doi.org/10.1023/A:1003092906969
|